Step 1: We are given that \( \sin \theta + \cos \theta = \sqrt{2} \). Squaring both sides, we get: \[ (\sin \theta + \cos \theta)^2 = (\sqrt{2})^2 \] \[ \sin^2 \theta + 2\sin \theta \cos \theta + \cos^2 \theta = 2 \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \) (Pythagorean identity), we can substitute this into the equation: \[ 1 + 2\sin \theta \cos \theta = 2 \] \[ 2\sin \theta \cos \theta = 1 \] \[ \sin \theta \cos \theta = \frac{1}{2} \]