Step 1: Use the chain rule. Let \( u = x^2 \), so \( y = \sin(u) \).
\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
\]
Step 2: Compute derivatives:
\[
\frac{dy}{du} = \cos(u) = \cos(x^2), \quad \frac{du}{dx} = 2x
\]
\[
\frac{dy}{dx} = \cos(x^2) \cdot 2x = 2x \cos(x^2)
\]
Step 3: Verify: The chain rule ensures the derivative of the inner function \( x^2 \) is multiplied. Matches option (2).