Step 1: For a quadratic equation \( ax^2 + bx + c = 0 \), the condition for real and distinct roots is that the discriminant \( \Delta>0 \), where \( \Delta = b^2 - 4ac \). Step 2: Identify the coefficients for \( x^2 - 6x + k = 0 \): - \( a = 1 \), - \( b = -6 \), - \( c = k \). Step 3: Compute the discriminant: \[ \Delta = (-6)^2 - 4 \cdot 1 \cdot k = 36 - 4k. \] Step 4: Set the condition for real and distinct roots: \[ 36 - 4k>0. \] Step 5: Solve for \( k \): \[ 36>4k \quad \Rightarrow \quad k<\frac{36}{4} \quad \Rightarrow \quad k<9. \]