Step 1: For a quadratic equation \( ax^2 + bx + c = 0 \), the condition for real and distinct roots is that the discriminant \( \Delta>0 \), where \( \Delta = b^2 - 4ac \).
Step 2: Identify the coefficients for \( x^2 - 6x + k = 0 \):
- \( a = 1 \),
- \( b = -6 \),
- \( c = k \).
Step 3: Compute the discriminant: \[ \Delta = (-6)^2 - 4 \cdot 1 \cdot k = 36 - 4k. \]
Step 4: Set the condition for real and distinct roots: \[ 36 - 4k>0. \]
Step 5: Solve for \( k \): \[ 36>4k \quad \Rightarrow \quad k<\frac{36}{4} \quad \Rightarrow \quad k<9. \]