>
AP EAPCET
>
Mathematics
List of top Mathematics Questions asked in AP EAPCET
The polynomial equation of degree 5 whose roots are the roots of the equation $$ x^5 - 3x^4 + 11x^2 - 12x + 4 = 0 $$ each increased by 2 is
AP EAPCET - 2025
AP EAPCET
Mathematics
Quadratic Equations
If a complex number $ z = x + iy $ represents a point $ P $ on the Argand plane and $$ \text{Arg} \left( \frac{z - 3 + 2i}{z + 2 - 3i} \right) = \frac{\pi}{4} $$ then the locus of $ P $ is
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
By taking $ \sqrt{a \pm ib} = x + iy, x>0 $, if we get $$ \frac{\sqrt{21} + 12\sqrt{2}i}{\sqrt{21} - 12\sqrt{2}i} = a + ib, $$ then $ \frac{b}{a} = $ ?
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
Two values of $ (-8 - 8\sqrt{3}i)^{1/4} $ are
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
If $ \alpha, \beta, \gamma $ are the roots of the equation $ x^3 - 12x^2 + kx - 18 = 0 $ and one of them is thrice the sum of the other two, then $$ \alpha^2 + \beta^2 + \gamma^2 - k = ? $$
AP EAPCET - 2025
AP EAPCET
Mathematics
Polynomials
If $ A = \begin{bmatrix} -1 & x & -3 \\ 2 & 4 & z \\ y & 5 & -6 \end{bmatrix} $ is symmetric and $ B = \begin{bmatrix} 0 & 2 & q \\ p & 0 & 4 \\ -3 & r & s \end{bmatrix} $ is skew-symmetric, then find $ |A| + |B| - |AB| $
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices and Determinants
If the inverse of $$ \begin{bmatrix} -x & 14x & 7x \\ 0 & 1 & 0 \\ x & -4x & -2x \end{bmatrix} $$ is $$ \begin{bmatrix} 2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix} $$ then the value of $$ \begin{vmatrix} x & x+1 & x+2 \\ x+1 & x+2 & x+3 \\ x+2 & x+3 & x+4 \end{vmatrix} $$
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices and Determinants
If the system of equations $ 2x + 3y - 3z = 3,\ x + 2y + \alpha z = 1,\ 2x - y + z = \beta $ has infinitely many solutions, then $ \frac{\alpha}{\beta} = \frac{\beta}{\alpha} $
AP EAPCET - 2025
AP EAPCET
Mathematics
Linear Equations
The general solution of the differential equation
\[ y + \cos x \left( \frac{dy}{dx} \right) - \cos^2 x = 0 \]
is
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
If the degree of the differential equation corresponding to the family of curves
\[ y = ax + \frac{1}{a} \quad (\text{where } a \neq 0 \text{ is an arbitrary constant}) \]
is \(r\) and its order is \(m\), then the solution of
\[ \frac{dy}{dx} - \frac{y}{2x}, \quad y(1) = \sqrt{r + m} \]
is
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
The area of the region lying between the curves \( y = \sqrt{4 - x^2} \), \( y^2 = 3x \) and the Y-axis is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
Evaluate the integral:
\[ \left| \int_{-\pi/4}^{\pi/3} \tan\left(x - \frac{\pi}{6}\right) dx \right| \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
Evaluate the integral: \[ \int \frac{(3x - 2)\tan\left(\sqrt{9x^2 - 12x + 1}\right)}{\sqrt{9x^2 - 12x + 1}} \, dx =\ ?\]
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
Evaluate the integral: \[ \int \frac{x^4 - 1}{x^2 \sqrt{x^4 + x^2 + 1}} \, dx =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
Evaluate the integral: \[ \int \frac{1}{9\cos^2 x - 24 \sin x \cos x + 16 \sin^2 x} \, dx = \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
The interval in which the curve represented by \( f(x) = 2x + \log\left(\frac{x}{2 + x}\right) \) is increasing is
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
If the extreme value of the function \( f(x) = \frac{4}{\sin x} + \frac{1}{1 - \sin x} \) in \(\left[0, \frac{\pi}{2}\right]\) is \(m\) and it exists at \(x = k\), then \(\cos k =\)}
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
The displacement \(S\) of a particle measured from a fixed point \(O\) on a line is given by \[ S = t^3 - 16t^2 + 64t - 16. \] Then the time at which the displacement of the particle is maximum is
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
If the tangent drawn at the point \((\alpha, \beta)\) on the curve \[ x^{2/3} + y^{2/3} = 4 \] is parallel to the line \[ \sqrt{3}x + y = 1, \] then \( \alpha^2 + \beta^2 =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
\[ \text{If } y = |\cos x - \sin x| + |\tan x - \cot x|, \text{ then } \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{3}} + \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{6}} = \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
\[ \text{Assertion (A): If } y = f(x) = (|x| - |x - 1|)^2, \text{ then } \left.\frac{dy}{dx}\right|_{x = 1} = 1 \] \[ \text{Reason (R): If } \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \text{ exists, then it is called the derivative of } f(x) \text{ at } x = a. \] Then:
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
\[ \text{If } x = 2 \cos^3 \theta \text{ and } y = 3 \sin^2 \theta, \text{ then } \frac{dy}{dx} =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
\[ \text{If the function } f(x) = \begin{cases} 1 + \cos x, & x \leq 0 \\ a - x, & 0 < x \leq 2 \\ x^2 - b^2, & x > 2 \end{cases} \text{ is continuous everywhere, then } a^2 + b^2 =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
\[ \text{If } \lim_{x \to 0} \frac{\cos 2x - \cos 4x}{1 - \cos 2x} = k, \text{ then evaluate } \lim_{x \to k} \frac{x^k - 27}{x^{k+1} - 81} \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
\[ \lim_{y \to 0} \frac{\sqrt{1 + \sqrt{1 + y^4}} - \sqrt{2}}{y^4} = \ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
Prev
1
...
34
35
36
37
38
...
97
Next