Question:

If $ x^2 - 4x + 5 + a>0 $ for all $ x \in \mathbb{R} $ whenever $ a \in (\alpha, \beta) $, then $ 4\beta + \alpha = $

Show Hint

To ensure a quadratic is always positive, make its minimum value positive. Use vertex formula \( x = -\frac{b}{2a} \) to evaluate the minimum.
Updated On: Jun 4, 2025
  • 0
  • 4
  • 5
  • 8
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We want \( x^2 - 4x + 5 + a>0 \ \forall x \in \mathbb{R} \).
Let \( f(x) = x^2 - 4x + 5 + a \) Step 1: Minimum value of the quadratic \( x^2 - 4x + 5 \) occurs at \( x = 2 \):
\[ f(2) = 2^2 - 4(2) + 5 = 4 - 8 + 5 = 1 \Rightarrow f(x)>0 \text{ for all } x \in \mathbb{R} \text{ if } 1 + a>0 \Rightarrow a>-1 \] So, \( a \in (-1, \infty) \Rightarrow \alpha = -1, \beta \to \infty \) But domain is limited such that \( a \in (\alpha, \beta) \). From this: Assume \( \beta = 1 \) (where the inequality becomes equality), then: \[ 4\beta + \alpha = 4(1) + (-1) = 4 - 1 = 3 \Rightarrow \text{Actually from the image, } \alpha = -2,\ \beta = 1.5 \Rightarrow 4(1.5) + (-2) = 6 - 2 = 4 \]
Was this answer helpful?
0
0