Question:

If $ A = \begin{bmatrix} -1 & x & -3 \\ 2 & 4 & z \\ y & 5 & -6 \end{bmatrix} $ is symmetric and $ B = \begin{bmatrix} 0 & 2 & q \\ p & 0 & 4 \\ -3 & r & s \end{bmatrix} $ is skew-symmetric, then find $ |A| + |B| - |AB| $

Show Hint

Use properties of symmetric and skew-symmetric matrices: \( a_{ij} = a_{ji} \), \( b_{ij} = -b_{ji} \), and \( b_{ii} = 0 \). These simplify filling unknowns quickly.
Updated On: Jun 4, 2025
  • \( xyz + pqr \)
  • \( xyz + q + r \)
  • \( \frac{xyz}{pq} \)
  • \( xyz + pq + rs \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

To make matrix \( A \) symmetric: \[ a_{ij} = a_{ji} \Rightarrow x = 2,\ z = 5,\ y = 4 \Rightarrow A = \begin{bmatrix} -1 & 2 & -3 \\ 2 & 4 & 5 \\ 4 & 5 & -6 \end{bmatrix} \] So, \( x = 2,\ y = 4,\ z = 5 \Rightarrow xyz = 40 \) To make \( B \) skew-symmetric: \[ b_{ij} = -b_{ji},\ b_{ii} = 0 \Rightarrow p = -2,\ q = -q,\ s = 0,\ r = -4 \Rightarrow q = 0,\ s = 0,\ r = -4 \] Hence, \[ |A| + |B| - |AB| = xyz + q + r = 40 + 0 + (-4) = 36 \Rightarrow \text{Expression form: } xyz + q + r \]
Was this answer helpful?
0
0

AP EAPCET Notification