To make matrix \( A \) symmetric: \[ a_{ij} = a_{ji} \Rightarrow x = 2,\ z = 5,\ y = 4 \Rightarrow A = \begin{bmatrix} -1 & 2 & -3 \\ 2 & 4 & 5 \\ 4 & 5 & -6 \end{bmatrix} \] So, \( x = 2,\ y = 4,\ z = 5 \Rightarrow xyz = 40 \) To make \( B \) skew-symmetric: \[ b_{ij} = -b_{ji},\ b_{ii} = 0 \Rightarrow p = -2,\ q = -q,\ s = 0,\ r = -4 \Rightarrow q = 0,\ s = 0,\ r = -4 \] Hence, \[ |A| + |B| - |AB| = xyz + q + r = 40 + 0 + (-4) = 36 \Rightarrow \text{Expression form: } xyz + q + r \]