First, analyze \( y = (|x| - |x - 1|)^2 \). We break it into piecewise expressions.
Consider the intervals:
1. For \( x \ge 1 \):
\[
|x| = x, \quad |x - 1| = x - 1 \Rightarrow y = (x - (x - 1))^2 = 1^2 = 1
\]
2. For \( 0 \le x < 1 \):
\[
|x| = x, \quad |x - 1| = 1 - x \Rightarrow y = (x - (1 - x))^2 = (2x - 1)^2
\]
3. For \( x < 0 \):
\[
|x| = -x, \quad |x - 1| = 1 - x \Rightarrow y = (-x - (1 - x))^2 = (-1)^2 = 1
\]
So, piecewise:
\[
f(x) =
\begin{cases}
1, & x < 0 \quad \text{or } x > 1 \\
(2x - 1)^2, & 0 \le x < 1 \\
1, & x = 1
\end{cases}
\]
Now compute derivative at \( x = 1 \) using one-sided limits:
From left:
\[
\lim_{x \to 1^-} f(x) = (2x - 1)^2 \Rightarrow \frac{d}{dx}[(2x - 1)^2] = 2 \cdot (2x - 1) \cdot 2 = 8x - 4
\Rightarrow \left. \frac{dy}{dx} \right|_{x \to 1^-} = 8(1) - 4 = 4
\]
From right:
\[
f(x) = 1 \Rightarrow \left. \frac{dy}{dx} \right|_{x \to 1^+} = 0
\]
Since left and right derivatives are not equal, derivative at \( x = 1 \) does not exist.
So:
- Assertion is false.
- The reason is a correct mathematical statement, but the assertion itself is wrong.
\[
\boxed{(4) (A) is false, (R) is true}
\]