We are given:
\[
S = t^3 - 16t^2 + 64t - 16
\]
Step 1: Find critical points
To find the time when displacement is maximum, take the derivative of \(S\) with respect to time \(t\):
\[
\frac{dS}{dt} = 3t^2 - 32t + 64
\]
Set \(\frac{dS}{dt} = 0\) for maximum or minimum displacement:
\[
3t^2 - 32t + 64 = 0
\]
Step 2: Solve the quadratic
Use the quadratic formula:
\[
t = \frac{32 \pm \sqrt{(-32)^2 - 4(3)(64)}}{2 \cdot 3}
= \frac{32 \pm \sqrt{1024 - 768}}{6}
= \frac{32 \pm \sqrt{256}}{6}
= \frac{32 \pm 16}{6}
\Rightarrow t = \frac{48}{6} = 8, \quad \frac{16}{6} = \frac{8}{3}
\]
Step 3: Use second derivative test
Differentiate again:
\[
\frac{d^2S}{dt^2} = 6t - 32
\]
- At \(t = 8\): \(\frac{d^2S}{dt^2} = 6(8) - 32 = 48 - 32 = 16 > 0\) → minimum
- At \(t = \frac{8}{3}\): \(\frac{d^2S}{dt^2} = 6 \cdot \frac{8}{3} - 32 = 16 - 32 = -16 < 0\) → maximum
Step 4: Final Answer
Maximum displacement occurs at \(t = \boxed{\dfrac{8}{3}}\)