Step 1: Let us denote:
\[ u = \sqrt{9x^2 - 12x + 1} \Rightarrow u^2 = 9x^2 - 12x + 1 \] Step 2: Differentiate both sides to find \(\frac{du}{dx}\):
\[ 2u \cdot \frac{du}{dx} = 18x - 12 \Rightarrow \frac{du}{dx} = \frac{18x - 12}{2u} = \frac{6(3x - 2)}{u} \] Step 3: Now examine the integrand:
\[ \int \frac{(3x - 2)\tan(u)}{u} \, dx \] Use the substitution from Step 2:
\[ dx = \frac{u}{6(3x - 2)} \, du \Rightarrow \int \frac{(3x - 2)\tan(u)}{u} \cdot \frac{u}{6(3x - 2)} \, du = \frac{1}{6} \int \tan(u) \, du \] Step 4: Integrate:
\[ \int \tan(u) \, du = \log |\sec(u)| + c \Rightarrow \frac{1}{6} \log |\sec(u)| + c \] Step 5: Recall \(u = \sqrt{9x^2 - 12x + 1}\), so:
\[ \frac{1}{6} \log \left| \sec\left(\sqrt{9x^2 - 12x + 1} \right) \right| + c \] But we were integrating:
\[ \int \frac{(3x - 2)\tan(u)}{u} \, dx \] We substituted and got:
\[ = \frac{1}{6} \cdot 2 \log \left| \sec(u) \right| + c = \frac{1}{3} \log \left| \sec\left( \sqrt{9x^2 - 12x + 1} \right) \right| + c \]
Match the pollination types in List-I with their correct mechanisms in List-II:
List-I (Pollination Type) | List-II (Mechanism) |
---|---|
A) Xenogamy | I) Genetically different type of pollen grains |
B) Ophiophily | II) Pollination by snakes |
C) Chasmogamous | III) Exposed anthers and stigmas |
D) Cleistogamous | IV) Flowers do not open |