We are given:
\[
\int \frac{1}{9\cos^2 x - 24 \sin x \cos x + 16 \sin^2 x} \, dx
\]
Step 1: Recognize the denominator as a perfect square
Try expressing the quadratic form in trigonometric terms as a perfect square:
\[
9\cos^2 x - 24 \sin x \cos x + 16 \sin^2 x
= (3\cos x - 4\sin x)^2
\]
Step 2: Substitute the simplified form
Now the integral becomes:
\[
\int \frac{1}{(3\cos x - 4\sin x)^2} \, dx
\]
Let \(u = 3\cos x - 4\sin x\), then
\[
\frac{du}{dx} = -3\sin x - 4\cos x
\Rightarrow \text{Not easily integrable directly, so try reverse engineering}
\]
We instead test the derivative of:
\[
I = \frac{\cos x}{4(3\cos x - 4\sin x)}
\]
Using quotient rule:
\[
\frac{dI}{dx} = \frac{-\sin x \cdot 4(3\cos x - 4\sin x) - \cos x \cdot 4(-3\sin x - 4\cos x)}{[4(3\cos x - 4\sin x)]^2}
\]
After simplifying the numerator, you’ll find:
\[
= \frac{1}{(3\cos x - 4\sin x)^2}
\Rightarrow \text{Matches the integrand}
\]
Step 3: Final Answer
\[
\boxed{\frac{\cos x}{4(3\cos x - 4\sin x)} + c}
\]