Step 1: Interpret the curves
We are given:
- \( y = \sqrt{4 - x^2} \) which is the upper semicircle of radius 2 centered at origin.
- \( y^2 = 3x \Rightarrow x = \dfrac{y^2}{3} \) is a rightward-opening parabola.
- The region lies between the parabola and the circle, bounded by the Y-axis.
Step 2: Find points of intersection
Substitute \( x = \dfrac{y^2}{3} \) into \( y = \sqrt{4 - x^2} \Rightarrow y = \sqrt{4 - \left( \dfrac{y^2}{3} \right)^2} \)
Solving this gives points of intersection at \( y = 0 \) and \( y = \sqrt{3} \)
Step 3: Set up the area
We'll integrate horizontally (along \( y \)) from 0 to \( \sqrt{3} \), and subtract the parabola from the circle:
Area \( A = \int_0^{\sqrt{3}} \left( \sqrt{4 - y^2} - \dfrac{y^2}{3} \right) dy \)
Step 4: Split the integral
\[ A = \int_0^{\sqrt{3}} \sqrt{4 - y^2} \, dy - \int_0^{\sqrt{3}} \dfrac{y^2}{3} \, dy \] First integral:
\[ \int_0^{\sqrt{3}} \sqrt{4 - y^2} \, dy \] is a standard integral, result is:
\[ \left[ \dfrac{y}{2} \sqrt{4 - y^2} + 2 \sin^{-1} \left( \dfrac{y}{2} \right) \right]_0^{\sqrt{3}} = \dfrac{\pi}{3} \] Second integral:
\[ \int_0^{\sqrt{3}} \dfrac{y^2}{3} dy = \dfrac{1}{3} \cdot \left[ \dfrac{y^3}{3} \right]_0^{\sqrt{3}} = \dfrac{1}{3} \cdot \dfrac{(\sqrt{3})^3}{3} = \dfrac{1}{2\sqrt{3}} \] Step 5: Final Answer
\[ A = \dfrac{\pi}{3} - \dfrac{1}{2\sqrt{3}} \]
Match the pollination types in List-I with their correct mechanisms in List-II:
List-I (Pollination Type) | List-II (Mechanism) |
---|---|
A) Xenogamy | I) Genetically different type of pollen grains |
B) Ophiophily | II) Pollination by snakes |
C) Chasmogamous | III) Exposed anthers and stigmas |
D) Cleistogamous | IV) Flowers do not open |