Find minimum of \( f(x) \): \[ f(x) = x^2 + 2bx + 2c^2 \Rightarrow \text{min at } x = -b,\ f(-b) = b^2 + 2c^2 \] Find maximum of \( g(x) \): \[ g(x) = -x^2 - 2cx + b^2 \Rightarrow \text{max at } x = -c,\ g(-c) = -c^2 + b^2 \] Now the condition: \[ b^2 + 2c^2>-c^2 + b^2 \Rightarrow 3c^2>0 \Rightarrow \frac{c^2}{b^2}>\frac{1}{2} \Rightarrow \left| \frac{c}{b} \right|>\sqrt{2} \]