Given:
Circle: \( x^2 + y^2 - 4x - 6y + k = 0 \)
Point \( P = (1, 2) \), and \( Q \) is its inverse with respect to the circle.
Center of the circle \( C = (2, 3) \), found by completing the square.
Also, \( CP \cdot CQ = 4 \)
Step 1: Find vector CP
\( \vec{CP} = P - C = (1 - 2, 2 - 3) = (-1, -1) \)
Let \( Q = (a, b) \Rightarrow \vec{CQ} = (a - 2, b - 3) \)
Step 2: Use dot product condition
Given \( \vec{CP} \cdot \vec{CQ} = 4 \)
So, \( (-1)(a - 2) + (-1)(b - 3) = 4 \)
→ \( -(a + b - 5) = 4 \Rightarrow a + b = 1 \)
Step 3: Try values satisfying a + b = 1
Let \( a = -0.5 \), then \( b = 1.5 \)
Now \( \vec{CQ} = (-2.5, -1.5) \), and dot product with \( \vec{CP} = (-1, -1) \):
\( (-1)(-2.5) + (-1)(-1.5) = 4 \) ✅
Final Answer:
\( a = -0.5 \Rightarrow 2a = -1 \)