Step 1: Understand the problem
We are given three points that lie on a plane:
\( A = (-a^2, 1, 1) \),
\( B = (1, -a^2, 1) \),
\( C = (1, 1, -a^2) \)
We are told that the point \( D = (-1, -1, 1) \) also lies on the same plane.
Step 2: Use vector approach to find normal
Let’s find two direction vectors on the plane:
\( \vec{AB} = B - A = (1 + a^2, -a^2 - 1, 0) \)
\( \vec{AC} = C - A = (1 + a^2, 0, -a^2 - 1) \)
Step 3: Find the normal vector using cross product
\( \vec{n} = \vec{AB} \times \vec{AC} \)
Using determinant method:
\[
\vec{n} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
1 + a^2 & -1 - a^2 & 0 \\
1 + a^2 & 0 & -1 - a^2 \\
\end{vmatrix}
= \hat{i}((−1 − a^2)(−1 − a^2) − 0) - \hat{j}((1 + a^2)(−1 − a^2) − 0) + \hat{k}((1 + a^2)(0) − (1 + a^2)(−1 − a^2))
\]
Simplifying:
\( \vec{n} = \hat{i}(1 + a^2)^2 - \hat{j}(−(1 + a^2)^2) + \hat{k}((1 + a^2)^2) \)
So \( \vec{n} = (1 + a^2)^2 (\hat{i} + \hat{j} + \hat{k}) \)
Step 4: General equation of the plane
Now use point-normal form of the plane with point \( A \):
Normal vector: \( (1, 1, 1) \)
Point: \( (-a^2, 1, 1) \)
So plane equation:
\( 1(x + a^2) + 1(y - 1) + 1(z - 1) = 0 \)
→ \( x + y + z + a^2 - 2 = 0 \)
Step 5: Check if point D lies on the plane
Substitute \( (-1, -1, 1) \) into the plane:
\( -1 + (-1) + 1 + a^2 - 2 = 0 \Rightarrow -1 + a^2 - 2 = 0 \Rightarrow a^2 = 3 \)
So, \( a = \pm \sqrt{3} \)
Final Answer:
\( S = \{\sqrt{3}, -\sqrt{3}\} \)