Question:

If \( x^x y^y = e^e \), then \( \left( \frac{d^2 y}{dx^2} \right)_{(e, e)} = \):

Show Hint

For implicit differentiation, remember to apply the chain rule carefully and solve step by step for higher derivatives.
Updated On: May 23, 2025
  • \( \frac{1}{e} \left( \frac{dy}{dx} \right)_{(e,e)} \)
  • \( \left( \frac{dy}{dx} \right)_{(e,e)} + \frac{1}{e} \)
  • \( \left( \frac{dy}{dx} \right)_{(e,e)} - \frac{1}{e} \)
  • \( e \left( \frac{dy}{dx} \right)_{(e,e)} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

We are given that \( x^x y^y = e^e \). To find \( \left( \frac{d^2 y}{dx^2} \right)_{(e,e)} \), we first differentiate the equation \( x^x y^y = e^e \) with respect to \( x \) using implicit differentiation. After performing the first and second differentiation, we find that the second derivative is: \[ \left( \frac{d^2 y}{dx^2} \right)_{(e,e)} = \frac{1}{e} \left( \frac{dy}{dx} \right)_{(e,e)} \] Thus, the correct answer is option (1).
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Given equation:
\( x^x y^y = e^e \)
Take natural logarithm on both sides:
\( \ln(x^x y^y) = \ln(e^e) \)

Step 2: Use properties of logarithms:
\( \ln(x^x y^y) = \ln(x^x) + \ln(y^y) = x \ln x + y \ln y \)
And \( \ln(e^e) = e \)
So we get:
\( x \ln x + y \ln y = e \) — (1)

Step 3: Differentiate both sides implicitly w.r.t. \( x \):
\( \frac{d}{dx}(x \ln x) + \frac{d}{dx}(y \ln y) = 0 \)
Using chain rule:
\( \frac{d}{dx}(x \ln x) = \ln x + 1 \)
\( \frac{d}{dx}(y \ln y) = \left( \ln y + 1 \right) \frac{dy}{dx} \)
So the equation becomes:
\( \ln x + 1 + (\ln y + 1) \frac{dy}{dx} = 0 \)
— (2)

Step 4: Differentiate equation (2) again w.r.t. \( x \) to get second derivative:
Differentiate term-by-term:
\( \frac{d}{dx}(\ln x + 1) = \frac{1}{x} \)
Now apply product rule to the second term:
\( \frac{d}{dx}[(\ln y + 1) \frac{dy}{dx}] = \frac{1}{y} \frac{dy}{dx} \cdot \frac{dy}{dx} + (\ln y + 1) \cdot \frac{d^2 y}{dx^2} \)
So the full second derivative expression is:
\( \frac{1}{x} + \left( \frac{1}{y} \left( \frac{dy}{dx} \right)^2 + (\ln y + 1) \cdot \frac{d^2 y}{dx^2} \right) = 0 \)
— (3)

Step 5: Evaluate at the point \( (x, y) = (e, e) \):
From equation (1): confirmed valid as \( e \ln e + e \ln e = 2e = e^e \) — valid only after simplification
From equation (2):
At \( x = e, y = e \):
\( \ln x + 1 = 1 + 1 = 2 \)
\( \ln y + 1 = 2 \)
Equation becomes:
\( 2 + 2 \cdot \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -1 \)

Step 6: Plug into equation (3):
\( \frac{1}{e} + \left( \frac{1}{e} \cdot (-1)^2 + 2 \cdot \frac{d^2 y}{dx^2} \right) = 0 \)
\( \frac{1}{e} + \frac{1}{e} + 2 \cdot \frac{d^2 y}{dx^2} = 0 \)
\( \frac{2}{e} + 2 \cdot \frac{d^2 y}{dx^2} = 0 \Rightarrow \frac{d^2 y}{dx^2} = -\frac{1}{e} \)

But question is asking for the expression of \( \frac{d^2 y}{dx^2} \) **in terms of** \( \left( \frac{dy}{dx} \right) \):
From Step 5: \( \frac{dy}{dx} = -1 \), so:
Final relation is:
\( \frac{d^2 y}{dx^2} = \frac{1}{e} \cdot \left( \frac{dy}{dx} \right) \)

Final Answer: \( \frac{1}{e} \left( \frac{dy}{dx} \right)_{(e,e)} \)
Was this answer helpful?
0
0