Since momentum is conserved, we use the principle of conservation of momentum:
\[
m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2
\]
where \( u_1 = 6 \, \text{m/s} \), \( u_2 = 0 \, \text{m/s} \), \( v_1 = 2 \, \text{m/s} \), and \( v_2 = 3 \, \text{m/s} \).
Substituting these values into the equation:
\[
m_1 \times 6 + m_2 \times 0 = m_1 \times 2 + m_2 \times 3
\]
\[
6m_1 = 2m_1 + 3m_2
\]
\[
4m_1 = 3m_2
\]
Thus, the ratio \( \frac{m_1}{m_2} = \frac{4}{3} \).