>
AP EAMCET
>
Mathematics
List of top Mathematics Questions asked in AP EAMCET
The values of \( x \) in \( (-\pi, \pi) \) which satisfy the equation \( \cos x + \cos 2x + \cos 3x + \cdots = 4^3 \) are:
AP EAMCET - 2024
AP EAMCET
Mathematics
Trigonometry
The number of ways of arranging 9 men and 5 women around a circular table so that no two women come together are:
AP EAMCET - 2024
AP EAMCET
Mathematics
permutations and combinations
The quotient when
\[ 3x^5 - 4x^4 + 5x^3 - 3x^2 + 6x - 8 \]
is divided by
\( x^2 + x - 3 \)
is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Polynomials
Consider the system of linear equations:
\[ x + 2y + z = -3, \] \[ 3x + 3y - 2z = -1, \] \[ 2x + 7y + 7z = -4. \]
Determine the nature of its solutions.
AP EAMCET - 2024
AP EAMCET
Mathematics
Linear Algebra
Let \( P(x_1, y_1, z_1) \) be the foot of the perpendicular drawn from the point
\[ Q(2, -2, 1) \]
to the plane
\[ x - 2y + z = 1. \]
If \( d \) is the perpendicular distance from the point \( Q \) to the plane and
\[ I = x_1 + y_1 + z_1, \]
then
\( I + 3d^2 \)
is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Plane
The value of \( c \) such that the straight line joining the points
\[ (0,3) \quad {and} \quad (5,-2) \]
is tangent to the curve
\[ y = \frac{c}{x+1} \]
is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Straight lines
The product of perpendiculars from the two foci of the ellipse
\[ \frac{x^2}{9} + \frac{y^2}{25} = 1 \]
on the tangent at any point on the ellipse is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Ellipse
If the ordinates of points \( P \) and \( Q \) on the parabola
\[ y^2 = 12x \]
are in the ratio 1:2, then the locus of the point of intersection of the normals to the parabola at \( P \) and \( Q \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Parabola
The pole of the straight line
\[ 9x + y - 28 = 0 \]
with respect to the circle
\[ 2x^2 + 2y^2 - 3x + 5y - 7 = 0 \]
is:
AP EAMCET - 2024
AP EAMCET
Mathematics
circle
If \( X \sim B(5, p) \) is a binomial variate such that \( p(X = 3) = p(X = 4) \), then \( P(|X - 3|<2) = \dots \)
AP EAMCET - 2024
AP EAMCET
Mathematics
Binomial Expansion
An urn contains 3 black and 5 red balls. If 3 balls are drawn at random from the urn, the mean of the probability distribution of the number of red balls drawn is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Probability Distribution
If two numbers \(x\) and \(y\) are chosen one after the other at random with replacement from the set of numbers \( \{1, 2, 3, \ldots, 10\} \), then the probability that \( |x^2 - y^2| \) is divisible by 6 is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Complex numbers
The coefficient of variation for the frequency distribution is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Coefficient of Variation
The shortest distance between the skew lines \( \vec{r} = (2\hat{i} - \hat{j}) + t(\hat{i} + 2\hat{k}) \) and \( \vec{r} = (-2\hat{i} + \hat{k}) + s(\hat{i} - \hat{j} - \hat{k}) \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Shortest Distance Between Skew Lines
The angle between the planes \( \vec{r} \cdot (12\hat{i} + 4\hat{j} - 3\hat{k}) = 5 \) and \( \vec{r} \cdot (5\hat{i} + 3\hat{j} + 4\hat{k}) = 7 \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Shortest Distance Between Skew Lines
If \( \vec{a}, \vec{b}, \vec{c} \) are 3 vectors such that \( |\vec{a}| = 5, |\vec{b}| = 8, |\vec{c}| = 11 \) and \( \vec{a} + \vec{b} + \vec{c} = 0 \), then the angle between the vectors \( \vec{a} \) and \( \vec{b} \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Vectors
If \( \vec{i} - 2\vec{j} + 3\vec{k}, 2\vec{i} + 3\vec{j} - \vec{k}, -3\vec{i} - \vec{j} - 2\vec{k} \) are the position vectors of three points A, B, C respectively, then A, B, C:
AP EAMCET - 2024
AP EAMCET
Mathematics
Vectors
Number of solutions of the trigonometric equation
\[ 2 \tan 2\theta - \cot 2\theta + 1 = 0 \quad \text{lying in the interval} \quad [0, \pi] \]
AP EAMCET - 2024
AP EAMCET
Mathematics
General and Particular Solutions of a Differential Equation
Assertion (A): If \( A = 10^\circ, B = 16^\circ, C = 19^\circ \), then:
\[ \tan(2A) \tan(2B) + \tan(2B) \tan(2C) + \tan(2C) \tan(2A) = 1. \]
Reason (R): If \( A + B + C = 180^\circ \), then:
\[ \cot\left(\frac{A}{2}\right) + \cot\left(\frac{B}{2}\right) + \cot\left(\frac{C}{2}\right) = \cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right). \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Locus of Normals
If \( A, B, C \) are the angles of a triangle, then
\[ \sin 2A - \sin 2B + \sin 2C = \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Some Properties of a Triangle
If
\[ \frac{x + 2}{(x^2 + 3)(x^4 + x^2)(x^2 + 2)} = \frac{Ax + B}{x^2 + 3} + \frac{Cx + D}{x^2 + 2} + \frac{Ex^3 + Fx^2 + Gx + H}{x^4 + x^2}, \]
then
\[ (E + F)(C + D)(A) = \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Locus of Normals
If a five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4, and 5 without repetition, then the total number of ways this can be done is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Complex numbers
The condition that the roots of
\( x^3 - bx^2 + cx - d = 0 \)
are in arithmetic progression is:
AP EAMCET - 2024
AP EAMCET
Mathematics
solution of system of linear inequalities in two variables
If \( a \) is a common root of
\( x^2 - 5x + \lambda = 0 \)
and
\( x^2 - 8x - 2\lambda = 0 \)
(\( \lambda \neq 0 \)) and \( \beta, \gamma \) are the other roots of them, then \( a + \beta + \gamma + \lambda = \):
AP EAMCET - 2024
AP EAMCET
Mathematics
General and Particular Solutions of a Differential Equation
Imaginary part of
\( \frac{(1 - i)^3}{(2 - i)(3 - 2i)} \)
is:
AP EAMCET - 2024
AP EAMCET
Mathematics
solution of system of linear inequalities in two variables
Prev
1
...
17
18
19
20
21
...
29
Next