We need to find the probability that \( |x^2 - y^2| \) is divisible by 6, where \( x \) and \( y \) are chosen from \( \{1, 2, 3, \ldots, 10\} \). We use the factorization \( x^2 - y^2 = (x - y)(x + y) \), and for this expression to be divisible by 6, either \( x - y \) or \( x + y \) must be divisible by 2 and 3.
Through calculation, you can verify that the total number of favorable outcomes is 30, and the total number of possible outcomes is 100.
Therefore, the probability is: \[ \frac{30}{100} = \frac{3}{10}. \] Thus, the correct answer is \( \frac{3}{10} \).
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is: