Determine the values of \(a\) and \(b\) for which the function \(f(x)\) defined as:
\[
f(x) =
\begin{cases}
1 + |\sin x|^{\left(\frac{a}{|\sin x|}\right)} & \text{if } \frac{-\pi}{6} < x < 0, \\
b & \text{if } x = 0, \\
e^{\left(\frac{\tan 2x}{\tan 3x}\right)} & \text{if } 0 < x < \frac{\pi}{6}
\end{cases}
\]
is continuous at \(x = 0\).