We are given the parametric equations of two skew lines:
\[
\vec{r}_1 = (2\hat{i} - \hat{j}) + t(\hat{i} + 2\hat{k}),
\]
and
\[
\vec{r}_2 = (-2\hat{i} + \hat{k}) + s(\hat{i} - \hat{j} - \hat{k}).
\]
To find the shortest distance between these skew lines, we use the formula:
\[
d = \frac{|(\vec{r}_2 - \vec{r}_1) \cdot (\vec{v}_1 \times \vec{v}_2)|}{|\vec{v}_1 \times \vec{v}_2|},
\]
where \( \vec{v}_1 \) and \( \vec{v}_2 \) are the direction vectors of the two lines, and \( \vec{r}_1 \) and \( \vec{r}_2 \) are points on the lines.
Here,
\[
\vec{v}_1 = \hat{i} + 2\hat{k}, \quad \vec{v}_2 = \hat{i} - \hat{j} - \hat{k},
\]
and
\[
\vec{r}_2 - \vec{r}_1 = (-2\hat{i} + \hat{k}) - (2\hat{i} - \hat{j}) = -4\hat{i} + \hat{j} + \hat{k}.
\]
Now, compute the cross product \( \vec{v}_1 \times \vec{v}_2 \), and then substitute in the formula for the shortest distance. After performing the necessary calculations, we get:
\[
d = \frac{3\sqrt{2}}{\sqrt{7}}.
\]
Thus, the correct answer is \( \frac{3\sqrt{2}}{\sqrt{7}} \).