We are given the following conditions: \[ |\vec{a}| = 5, \quad |\vec{b}| = 8, \quad |\vec{c}| = 11, \quad \vec{a} + \vec{b} + \vec{c} = 0. \] Using the property \( \vec{a} + \vec{b} + \vec{c} = 0 \), we can write \( \vec{c} = -(\vec{a} + \vec{b}) \).
Now, to find the angle \( \theta \) between \( \vec{a} \) and \( \vec{b} \), we use the formula for the dot product: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta. \] Substitute the known values and solve for \( \cos \theta \), we find that: \[ \cos \theta = \frac{-2}{5}. \] Thus, the correct answer is \( \cos^{-1}\left( \frac{-2}{5} \right) \).
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))