We are given the following conditions: \[ |\vec{a}| = 5, \quad |\vec{b}| = 8, \quad |\vec{c}| = 11, \quad \vec{a} + \vec{b} + \vec{c} = 0. \] Using the property \( \vec{a} + \vec{b} + \vec{c} = 0 \), we can write \( \vec{c} = -(\vec{a} + \vec{b}) \).
Now, to find the angle \( \theta \) between \( \vec{a} \) and \( \vec{b} \), we use the formula for the dot product: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta. \] Substitute the known values and solve for \( \cos \theta \), we find that: \[ \cos \theta = \frac{-2}{5}. \] Thus, the correct answer is \( \cos^{-1}\left( \frac{-2}{5} \right) \).
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are: