Step 1: Identifying the pattern
The given expression:
\[
\tan \alpha + 2 \tan 2\alpha + 4 \tan 4\alpha + 8 \cot 8\alpha
\]
follows a pattern involving tangent and cotangent functions.
Rewriting \( \cot 8\alpha \) in terms of \( \tan \):
\[
\cot 8\alpha = \frac{1}{\tan 8\alpha}.
\]
Step 2: Using tangent and cotangent properties
The terms can be rewritten using double angle identities:
\[
2 \tan 2\alpha = \frac{2 \sin 2\alpha}{\cos 2\alpha}, \quad
4 \tan 4\alpha = \frac{4 \sin 4\alpha}{\cos 4\alpha}, \quad
8 \cot 8\alpha = \frac{8 \cos 8\alpha}{\sin 8\alpha}.
\]
Applying trigonometric simplifications leads to:
\[
\tan \alpha + 2 \tan 2\alpha + 4 \tan 4\alpha + 8 \cot 8\alpha = \cot \alpha.
\]
Step 3: Conclusion
Thus, the final answer is:
\[
\boxed{\cot \alpha}.
\]