The reaction at the hydrogen electrode is:
\[ 2e^- + 2H^+(aq) \rightarrow H_2(g) \]
The Nernst equation for this half-cell reaction is:
\[ E = E^\circ - \frac{0.059}{n} \log \frac{P_{H_2}}{[H^+]^2} \]
where:
Setting \( E = 0 \):
To make the emf zero, set \( E = 0 \):
\[ 0 = 0 - \frac{0.059}{2} \log \frac{P_{H_2}}{(10^{-7})^2} \]
\[ \frac{0.059}{2} \log \frac{P_{H_2}}{10^{-14}} = 0 \]
\[ \log \frac{P_{H_2}}{10^{-14}} = 0 \]
\[ \frac{P_{H_2}}{10^{-14}} = 1 \]
\[ P_{H_2} = 10^{-14} \, \text{bar} \]
The required pressure of \( H_2 \) is \( 10^{-14} \, \text{bar} \).
If the molar conductivity ($\Lambda_m$) of a 0.050 mol $L^{–1}$ solution of a monobasic weak acid is 90 S $cm^{2} mol^{–1}$, its extent (degree) of dissociation will be:
[Assume: $\Lambda^0$ = 349.6 S $cm^{2} mol^{–1}$ and $\Lambda^0_{\text{acid}}$ = 50.4 S$ cm^{2} mol^{–1}$]
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.