The reaction at the hydrogen electrode is:
\[ 2e^- + 2H^+(aq) \rightarrow H_2(g) \]
The Nernst equation for this half-cell reaction is:
\[ E = E^\circ - \frac{0.059}{n} \log \frac{P_{H_2}}{[H^+]^2} \]
where:
Setting \( E = 0 \):
To make the emf zero, set \( E = 0 \):
\[ 0 = 0 - \frac{0.059}{2} \log \frac{P_{H_2}}{(10^{-7})^2} \]
\[ \frac{0.059}{2} \log \frac{P_{H_2}}{10^{-14}} = 0 \]
\[ \log \frac{P_{H_2}}{10^{-14}} = 0 \]
\[ \frac{P_{H_2}}{10^{-14}} = 1 \]
\[ P_{H_2} = 10^{-14} \, \text{bar} \]
The required pressure of \( H_2 \) is \( 10^{-14} \, \text{bar} \).
On charging the lead storage battery, the oxidation state of lead changes from $\mathrm{x}_{1}$ to $\mathrm{y}_{1}$ at the anode and from $\mathrm{x}_{2}$ to $\mathrm{y}_{2}$ at the cathode. The values of $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}$ are respectively:
Match List-I with List-II: List-I