The reaction at the hydrogen electrode is:
\[ 2e^- + 2H^+(aq) \rightarrow H_2(g) \]
The Nernst equation for this half-cell reaction is:
\[ E = E^\circ - \frac{0.059}{n} \log \frac{P_{H_2}}{[H^+]^2} \]
where:
Setting \( E = 0 \):
To make the emf zero, set \( E = 0 \):
\[ 0 = 0 - \frac{0.059}{2} \log \frac{P_{H_2}}{(10^{-7})^2} \]
\[ \frac{0.059}{2} \log \frac{P_{H_2}}{10^{-14}} = 0 \]
\[ \log \frac{P_{H_2}}{10^{-14}} = 0 \]
\[ \frac{P_{H_2}}{10^{-14}} = 1 \]
\[ P_{H_2} = 10^{-14} \, \text{bar} \]
The required pressure of \( H_2 \) is \( 10^{-14} \, \text{bar} \).
For the given cell: \[ {Fe}^{2+}(aq) + {Ag}^+(aq) \to {Fe}^{3+}(aq) + {Ag}(s) \] The standard cell potential of the above reaction is given. The standard reduction potentials are given as: \[ {Ag}^+ + e^- \to {Ag} \quad E^\circ = x \, {V} \] \[ {Fe}^{2+} + 2e^- \to {Fe} \quad E^\circ = y \, {V} \] \[ {Fe}^{3+} + 3e^- \to {Fe} \quad E^\circ = z \, {V} \] The correct answer is: