The reaction at the hydrogen electrode is:
\[ 2e^- + 2H^+(aq) \rightarrow H_2(g) \]
The Nernst equation for this half-cell reaction is:
\[ E = E^\circ - \frac{0.059}{n} \log \frac{P_{H_2}}{[H^+]^2} \]
where:
Setting \( E = 0 \):
To make the emf zero, set \( E = 0 \):
\[ 0 = 0 - \frac{0.059}{2} \log \frac{P_{H_2}}{(10^{-7})^2} \]
\[ \frac{0.059}{2} \log \frac{P_{H_2}}{10^{-14}} = 0 \]
\[ \log \frac{P_{H_2}}{10^{-14}} = 0 \]
\[ \frac{P_{H_2}}{10^{-14}} = 1 \]
\[ P_{H_2} = 10^{-14} \, \text{bar} \]
The required pressure of \( H_2 \) is \( 10^{-14} \, \text{bar} \).
Consider the following half cell reaction $ \text{Cr}_2\text{O}_7^{2-} (\text{aq}) + 6\text{e}^- + 14\text{H}^+ (\text{aq}) \longrightarrow 2\text{Cr}^{3+} (\text{aq}) + 7\text{H}_2\text{O}(1) $
The reaction was conducted with the ratio of $\frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}]} = 10^{-6}$
The pH value at which the EMF of the half cell will become zero is ____ (nearest integer value)
[Given : standard half cell reduction potential $\text{E}^\circ_{\text{Cr}_2\text{O}_7^{2-}, \text{H}^+/\text{Cr}^{3+}} = 1.33\text{V}, \quad \frac{2.303\text{RT}}{\text{F}} = 0.059\text{V}$
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)