If the molar conductivity ($\Lambda_m$) of a 0.050 mol $L^{–1}$ solution of a monobasic weak acid is 90 S $cm^{2} mol^{–1}$, its extent (degree) of dissociation will be:
[Assume: $\Lambda^0$ = 349.6 S $cm^{2} mol^{–1}$ and $\Lambda^0_{\text{acid}}$ = 50.4 S$ cm^{2} mol^{–1}$]
The degree of dissociation ($\alpha$) is defined as the ratio of the molar conductivity at a given concentration ($\Lambda_m$) to the limiting molar conductivity at infinite dilution ($\Lambda_0$). In this case, the limiting molar conductivity of the weak acid ($\Lambda_0$) can be calculated by summing the limiting molar conductivities of the ions it dissociates into, i.e., H+ and A-:
$$ \Lambda_0 = \Lambda^0_{\text{H}^+} + \Lambda^0_{\text{acid}^-} $$
Given that $\Lambda^0_{\text{H}^+} = 349.6 \text{ S cm}^2 \text{ mol}^{-1}$ and $\Lambda^0_{\text{acid}^-} = 50.4 \text{ S cm}^2 \text{ mol}^{-1}$, we can calculate $\Lambda_0$:
$$ \Lambda_0 = 349.6 + 50.4 = 400.0 \text{ S cm}^2 \text{ mol}^{-1} $$
Now, we can calculate the degree of dissociation ($\alpha$) using the following formula:
$$ \alpha = \frac{\Lambda_m}{\Lambda_0} $$
Given that $\Lambda_m = 90 \text{ S cm}^2 \text{ mol}^{-1}$, we have:
$$ \alpha = \frac{90}{400} = 0.225 $$
Thus, the degree of dissociation is approximately 0.225.
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)
Consider the following half cell reaction $ \text{Cr}_2\text{O}_7^{2-} (\text{aq}) + 6\text{e}^- + 14\text{H}^+ (\text{aq}) \longrightarrow 2\text{Cr}^{3+} (\text{aq}) + 7\text{H}_2\text{O}(1) $
The reaction was conducted with the ratio of $\frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}]} = 10^{-6}$
The pH value at which the EMF of the half cell will become zero is ____ (nearest integer value)
[Given : standard half cell reduction potential $\text{E}^\circ_{\text{Cr}_2\text{O}_7^{2-}, \text{H}^+/\text{Cr}^{3+}} = 1.33\text{V}, \quad \frac{2.303\text{RT}}{\text{F}} = 0.059\text{V}$
| Concentration of KCl solution (mol/L) | Conductivity at 298.15 K (S cm-1) | Molar Conductivity at 298.15 K (S cm2 mol-1) |
|---|---|---|
| 1.000 | 0.1113 | 111.3 |
| 0.100 | 0.0129 | 129.0 |
| 0.010 | 0.00141 | 141.0 |
