Step 1: Understanding the Concept:
The Gibbs free energy change (\(\Delta G\)) of an electrochemical cell reaction is related to its cell potential (\(E_{cell}\)). For non-standard conditions, we first need to calculate the standard cell potential (\(E^\circ_{cell}\)) and then use the Nernst equation to find the actual cell potential (\(E_{cell}\)) under the given concentrations.
Step 2: Key Formulae:
1. Standard Cell Potential: \(E^\circ_{cell} = E^\circ_{cathode} - E^\circ_{anode}\)
2. Nernst Equation (at 298 K): \(E_{cell} = E^\circ_{cell} - \frac{0.0591}{n} \log_{10} Q\)
3. Gibbs Energy Change: \(\Delta G = -nFE_{cell}\)
Step 3: Detailed Explanation:
Identify Anode, Cathode, and Overall Reaction:
- Anode (Oxidation, left side): Cr(s) → Cr³⁺(aq) + 3e⁻
- Cathode (Reduction, right side): Fe²⁺(aq) + 2e⁻ → Fe(s)
To balance the electrons, multiply the anode reaction by 2 and the cathode reaction by 3.
- Overall reaction: \(2\text{Cr}(s) + 3\text{Fe}^{2+}(aq) \rightarrow 2\text{Cr}^{3+}(aq) + 3\text{Fe}(s)\)
- The number of moles of electrons transferred, \(n = 6\).
Calculate Standard Cell Potential (\(E^\circ_{cell}\)):
\[ E^\circ_{cell} = E^\circ_{\text{cathode (Fe)}} - E^\circ_{\text{anode (Cr)}} = (-0.45 \text{ V}) - (-0.75 \text{ V}) = +0.30 \text{ V} \]
Calculate the Reaction Quotient (Q):
\[ Q = \frac{[\text{Products}]^{\text{coeff}}}{[\text{Reactants}]^{\text{coeff}}} = \frac{[\text{Cr}^{3+}]^2}{[\text{Fe}^{2+}]^3} = \frac{(0.1)^2}{(0.01)^3} = \frac{(10^{-1})^2}{(10^{-2})^3} = \frac{10^{-2}}{10^{-6}} = 10^4 \]
Calculate Cell Potential (\(E_{cell}\)) using Nernst Equation:
\[ E_{cell} = 0.30 - \frac{0.0591}{6} \log_{10}(10^4) \]
\[ E_{cell} = 0.30 - \frac{0.0591}{6} \times 4 = 0.30 - \frac{0.2364}{6} = 0.30 - 0.0394 = 0.2606 \text{ V} \]
Calculate Gibbs Energy Change (\(\Delta G\)):
\[ \Delta G = -nFE_{cell} = -6 \times 96500 \text{ C mol}^{-1} \times 0.2606 \text{ V} \]
\[ \Delta G = -579000 \times 0.2606 \text{ J mol}^{-1} = -150887.4 \text{ J mol}^{-1} \]
Convert to kJ mol⁻¹:
\[ \Delta G = -150.8874 \text{ kJ mol}^{-1} \approx -150.9 \text{ kJ mol}^{-1} \]
Step 4: Final Answer:
The Gibbs energy change for the reaction is -150.9 kJ mol⁻¹. Therefore, option (A) is correct.