The moment of inertia of a solid sphere about its diameter is given by the formula:
\( I_{\text{sphere}} = \frac{2}{5}mr^2 \)
where: - \( m \) is the mass of the sphere, - \( r \) is the radius of the sphere.
The parallel axis theorem states that the moment of inertia of a body about an axis parallel to and a distance \( d \) away from an axis through its center of mass is given by:
\( I = I_{\text{cm}} + md^2 \)
where: - \( I_{\text{cm}} \) is the moment of inertia about the center of mass axis, - \( d \) is the distance from the center of mass to the new axis.
The distance between the center of a sphere and the midpoint of the rod is:
\( d = \frac{40}{2} \, \text{cm} = 20 \, \text{cm} = 0.2 \, \text{m} \)
The radius of each sphere is \( r = 10 \, \text{cm} = 0.1 \, \text{m} \). Using the parallel axis theorem, the moment of inertia of one sphere about the midpoint of the rod is:
\( I_{\text{one}} = \frac{2}{5}mr^2 + md^2 \)
Substitute the values into the equation:
\( I_{\text{one}} = \frac{2}{5}(2)(0.1)^2 + (2)(0.2)^2 = 0.008 + 0.08 = 0.088 \, \text{kg-m}^2 \)
Since there are two identical spheres, the total moment of inertia of the system is:
\( I_{\text{sys}} = 2 \times I_{\text{one}} = 2 \times 0.088 = 0.176 \, \text{kg-m}^2 = 176 \times 10^{-3} \, \text{kg-m}^2 \)
The moment of inertia of the system is \( \mathbf{176 \times 10^{-3} \, \text{kg-m}^2} \).
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Two point charges 2q and q are placed at vertex A and centre of face CDEF of the cube as shown in figure. The electric flux passing through the cube is : 
Suppose there is a uniform circular disc of mass M kg and radius r m shown in figure. The shaded regions are cut out from the disc. The moment of inertia of the remainder about the axis A of the disc is given by $\frac{x{256} Mr^2$. The value of x is ___.
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 