If $\overrightarrow{\mathrm{L}}$ and $\overrightarrow{\mathrm{P}}$ represent the angular momentum and linear momentum respectively of a particle of mass ' $m$ ' having position vector $\overrightarrow{\mathrm{r}}=\mathrm{a}(\hat{\mathrm{i}} \cos \omega \mathrm{t}+\hat{\mathrm{j}} \sin \omega \mathrm{t})$. The direction of force is
A circular ring and a solid sphere having same radius roll down on an inclined plane from rest without slipping. The ratio of their velocities when reached at the bottom of the plane is $\sqrt{\frac{\mathrm{x}}{5}}$ where $\mathrm{x}=$ _______.
Which of the following are correct expression for torque acting on a body?
A. $\ddot{\tau}=\ddot{\mathrm{r}} \times \ddot{\mathrm{L}}$
B. $\ddot{\tau}=\frac{\mathrm{d}}{\mathrm{dt}}(\ddot{\mathrm{r}} \times \ddot{\mathrm{p}})$
C. $\ddot{\tau}=\ddot{\mathrm{r}} \times \frac{\mathrm{d} \dot{\mathrm{p}}}{\mathrm{dt}}$
D. $\ddot{\tau}=\mathrm{I} \dot{\alpha}$
E. $\ddot{\tau}=\ddot{\mathrm{r}} \times \ddot{\mathrm{F}}$
( $\ddot{r}=$ position vector; $\dot{\mathrm{p}}=$ linear momentum; $\ddot{\mathrm{L}}=$ angular momentum; $\ddot{\alpha}=$ angular acceleration; $\mathrm{I}=$ moment of inertia; $\ddot{\mathrm{F}}=$ force; $\mathrm{t}=$ time $)$
Choose the correct answer from the options given below:
A force of 49 N acts tangentially at the highest point of a sphere (solid) of mass 20 kg, kept on a rough horizontal plane. If the sphere rolls without slipping, then the acceleration of the center of the sphere is
Match List-I with List-II: List-I