1. Simplify the Complex Fraction
To find the real part of the complex fraction, we need to eliminate the imaginary part from the denominator. Multiply the numerator and denominator by the conjugate of the denominator:
\(\frac{2\cos\theta + i\sin\theta}{\cos\theta - 3i\sin\theta} \cdot \frac{\cos\theta + 3i\sin\theta}{\cos\theta + 3i\sin\theta}\)
\(= \frac{(2\cos\theta + i\sin\theta)(\cos\theta + 3i\sin\theta)}{(\cos\theta - 3i\sin\theta)(\cos\theta + 3i\sin\theta)}\)
\( = \frac{2\cos^2\theta + 6i\cos\theta\sin\theta + i\cos\theta\sin\theta - 3\sin^2\theta}{\cos^2\theta + 9\sin^2\theta}\)
\( = \frac{2\cos^2\theta - 3\sin^2\theta + 7i\cos\theta\sin\theta}{\cos^2\theta + 9\sin^2\theta}\)
2. Extract the Real Part
The real part of the complex fraction is:
$\text{Re}\left(\frac{2\cos\theta + i\sin\theta}{\cos\theta - 3i\sin\theta}\right) = \frac{2\cos^2\theta - 3\sin^2\theta}{\cos^2\theta + 9\sin^2\theta}$
3. Set Up the Equation
We are given that $1 + 10 \cdot \text{Re}\left(\frac{2\cos\theta + i\sin\theta}{\cos\theta - 3i\sin\theta}\right) = 0$. Substitute the real part we found:
$1 + 10 \cdot \frac{2\cos^2\theta - 3\sin^2\theta}{\cos^2\theta + 9\sin^2\theta} = 0$
$\implies 1 + \frac{20\cos^2\theta - 30\sin^2\theta}{\cos^2\theta + 9\sin^2\theta} = 0$
$\implies \frac{\cos^2\theta + 9\sin^2\theta + 20\cos^2\theta - 30\sin^2\theta}{\cos^2\theta + 9\sin^2\theta} = 0$
$\implies 21\cos^2\theta - 21\sin^2\theta = 0 \implies \cos^2\theta - \sin^2\theta = 0 $
$\implies \cos^2\theta = \sin^2\theta$
4. Solve for θ
$\cos^2\theta = \sin^2\theta$ implies $\tan^2\theta = 1$, so $\tan\theta = \pm 1$.
In the interval $[0, 2\pi]$:
$\tan\theta = 1 \implies \theta = \frac{\pi}{4}, \frac{5\pi}{4}$
$\tan\theta = -1 \implies \theta = \frac{3\pi}{4}, \frac{7\pi}{4}$
Therefore, the set $A = \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$
5. Calculate the Sum of Squares
$\sum \theta^2 = \left(\frac{\pi}{4}\right)^2 + \left(\frac{3\pi}{4}\right)^2 + \left(\frac{5\pi}{4}\right)^2 + \left(\frac{7\pi}{4}\right)^2 = \frac{\pi^2}{16} (1 + 9 + 25 + 49) = \frac{\pi^2}{16} (84) = \frac{21}{4}\pi^2$
Answer: The sum of the squares of the values of θ in set A is $\frac{21}{4}\pi^2$. So the answer is option 2.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: