Two capacitors $ C_1 $ and $ C_2 $ are connected in parallel to a battery. The charge-time graph shows the charge on each capacitor as a function of time.
From the graph, we can see that $ C_1 $ reaches a higher charge value than $ C_2 $ as $ t \to \infty $.
Since the capacitors are connected in parallel, they have the same voltage $ V $ across them.
We know that $ Q = CV $, where $ Q $ is the charge, $ C $ is the capacitance, and $ V $ is the voltage.
Since $ C_1 $ has a higher charge $ Q_1 > Q_2 $ at the same voltage $ V $, it must have a larger capacitance $ C_1 > C_2 $.
The energy stored in a capacitor is given by $ U = \frac{1}{2} CV^2 $.
Since $ C_1 > C_2 $ and both capacitors have the same voltage $ V $, the energy stored in $ C_1 $ is greater than the energy stored in $ C_2 $, i.e., $ U_1 > U_2 $.
Thus, we have $ C_1 > C_2 $ and $ U_1 > U_2 $.
Final Answer:
The final answer is $ \ C_1 > C_2,\ U_1 > U_2 $.
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: