\( (x + y)(y + z)(z + x) = \text{constant} \)
\(xyz = \text{constant}\)
\( (x^2 + y^2)(y^2 + z^2)(z^2 + x^2) = \text{constant} \)
\( xy + yz + zx = \text{constant} \)
The problem aims to determine the electric potential \(v\) due to a system of charged wires. The fundamental principle used is that the electric potential is the negative line integral of the electric field.
1. Electric Potential Definition:
The electric potential \(v\) is defined as the negative line integral of the electric field \(\mathbf{E}\) along a path \(d\mathbf{r}\):
\[ v = - \int \mathbf{E} \cdot d\mathbf{r} \]
2. Electric Field of a Single Charged Wire:
The electric field \(\mathbf{E}\) due to an infinitely long charged wire with linear charge density \(\lambda\) at a radial distance \(r\) is given by:
\[ \mathbf{E} = \frac{2k\lambda}{r} \]
where \(k\) is Coulomb's constant.
3. Potential Due to a Single Wire:
Integrating the electric field to find the potential \(v\) due to a single wire:
\[ v = - \int \frac{2k\lambda}{r} dr = -2k\lambda \int \frac{1}{r} dr = -2k\lambda \ln{r} + C \]
where \(C\) is the constant of integration.
4. Potential Due to All Wires:
Assuming we have three wires located in such a way that the distances from the point of interest to each wire are given by \(r_1 = \sqrt{x^2 + y^2}\), \(r_2 = \sqrt{y^2 + z^2}\), and \(r_3 = \sqrt{z^2 + x^2}\), the total potential is the sum of the potentials from each wire:
\[ v = -2k\lambda \ln{\sqrt{x^2 + y^2}} - 2k\lambda \ln{\sqrt{y^2 + z^2}} - 2k\lambda \ln{\sqrt{z^2 + x^2}} + C \]
(Note: I've changed the sign here, as the solution in the prompt seems to have dropped the negative signs, or chosen a slightly different reference point for 0 potential.)
5. Simplification and Final Expression:
Combine the logarithmic terms:
\[ v = -2k\lambda \left( \ln{\sqrt{x^2 + y^2}} + \ln{\sqrt{y^2 + z^2}} + \ln{\sqrt{z^2 + x^2}} \right) + C \]
\[ v = -2k\lambda \ln{\left( \sqrt{(x^2 + y^2)(y^2 + z^2)(z^2 + x^2)} \right)} + C \]
6. Setting \(v = c\): If \(v\) is constant (equal to \(c\)), then: \[ -2k\lambda \ln{\left( \sqrt{(x^2 + y^2)(y^2 + z^2)(z^2 + x^2)} \right)} + C = c \] \[ \ln{\left( \sqrt{(x^2 + y^2)(y^2 + z^2)(z^2 + x^2)} \right)} = \frac{C - c}{2k\lambda} = C' \] Since C' is some other constant: \[ \sqrt{(x^2 + y^2)(y^2 + z^2)(z^2 + x^2)} = e^{C'} = C'' \] \[ (x^2 + y^2)(y^2 + z^2)(z^2 + x^2) = (C'')^2 \] Where \(C''\) is another constant.
Final Conclusion:
Therefore, the condition for constant potential is:
\[ (x^2 + y^2)(y^2 + z^2)(z^2 + x^2) = \text{constant} \]
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: