The fringe width \( \beta \) in a double slit experiment is given by the formula: \[ \beta = \frac{\lambda D}{d} \] Where:
\( \lambda \) is the wavelength of the light,
\( D \) is the distance between the slits and the screen,
\( d \) is the distance between the slits.
For the wavelength \( \lambda = 600 \, \text{nm} = 600 \times 10^{-9} \, \text{m} \), \( D = 1.0 \, \text{m} \), and \( d = 1.0 \, \text{mm} = 1.0 \times 10^{-3} \, \text{m} \), we can calculate the fringe width: \[ \beta = \frac{600 \times 10^{-9} \times 1.0}{1.0 \times 10^{-3}} = 6.0 \times 10^{-4} \, \text{m} \] The distance of the third bright fringe from the central maximum is: \[ y_3 = 3 \times \beta = 3 \times 6.0 \times 10^{-4} = 1.8 \times 10^{-3} \, \text{m} = 1.8 \, \text{mm} \] Thus, the distance of the third bright fringe is 1.8 mm.
Find work done in bringing charge q = 3nC from infinity to point A as shown in the figure : 
Two capacitors \( C_1 \) and \( C_2 \) are connected in parallel to a battery. Charge-time graph is shown below for the two capacitors. The energy stored with them are \( U_1 \) and \( U_2 \), respectively. Which of the given statements is true? 
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below: