The fringe width \( \beta \) in a double slit experiment is given by the formula: \[ \beta = \frac{\lambda D}{d} \] Where:
\( \lambda \) is the wavelength of the light,
\( D \) is the distance between the slits and the screen,
\( d \) is the distance between the slits.
For the wavelength \( \lambda = 600 \, \text{nm} = 600 \times 10^{-9} \, \text{m} \), \( D = 1.0 \, \text{m} \), and \( d = 1.0 \, \text{mm} = 1.0 \times 10^{-3} \, \text{m} \), we can calculate the fringe width: \[ \beta = \frac{600 \times 10^{-9} \times 1.0}{1.0 \times 10^{-3}} = 6.0 \times 10^{-4} \, \text{m} \] The distance of the third bright fringe from the central maximum is: \[ y_3 = 3 \times \beta = 3 \times 6.0 \times 10^{-4} = 1.8 \times 10^{-3} \, \text{m} = 1.8 \, \text{mm} \] Thus, the distance of the third bright fringe is 1.8 mm.
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Time period of a simple pendulum is longer at the top of a mountain than that at the base of the mountain.
Reason (R): Time period of a simple pendulum decreases with increasing value of acceleration due to gravity and vice-versa. In the light of the above statements, choose the most appropriate answer from the options given below:
Arrange the following in the ascending order of wavelength (\( \lambda \)):
(A) Microwaves (\( \lambda_1 \))
(B) Ultraviolet rays (\( \lambda_2 \))
(C) Infrared rays (\( \lambda_3 \))
(D) X-rays (\( \lambda_4 \))
Choose the most appropriate answer from the options given below:

“One of these days you’re going to talk yourself into a load of trouble,” her father said aggressively. What do you learn about Sophie’s father from these lines? (Going Places)