We are asked to find the area of the region bounded by the curve \( y = 2 + |x + 1| \), the lines \( x = -4 \), \( x = 3 \), and the x-axis (\( y = 0 \)). ### Step 1: Understanding the curve The function \( y = 2 + |x + 1| \) is a V-shaped curve. The absolute value function creates a piecewise function: \[ y = \begin{cases} 2 + (x + 1) = x + 3, & \text{for} \quad x \geq -1, \\ 2 - (x + 1) = 3 - x, & \text{for} \quad x < -1. \end{cases} \] ### Step 2: Set up the integral We need to calculate the area between the curve and the x-axis from \( x = -4 \) to \( x = 3 \). We break this integral into two parts based on the piecewise definition of the function: 1. From \( x = -4 \) to \( x = -1 \), the equation for the curve is \( y = 3 - x \). 2. From \( x = -1 \) to \( x = 3 \), the equation for the curve is \( y = x + 3 \). Thus, the area \( A \) is given by: \[ A = \int_{-4}^{-1} (3 - x) \, dx + \int_{-1}^{3} (x + 3) \, dx. \] ### Step 3: Calculate the first integral \[ \int_{-4}^{-1} (3 - x) \, dx = \left[ 3x - \frac{x^2}{2} \right]_{-4}^{-1} = \left( 3(-1) - \frac{(-1)^2}{2} \right) - \left( 3(-4) - \frac{(-4)^2}{2} \right). \] Simplifying: \[ = (-3 - \frac{1}{2}) - (-12 - 8) = (-3 - \frac{1}{2}) + 20 = 17 - \frac{1}{2} = \frac{34}{2} - \frac{1}{2} = \frac{33}{2}. \] ### Step 4: Calculate the second integral \[ \int_{-1}^{3} (x + 3) \, dx = \left[ \frac{x^2}{2} + 3x \right]_{-1}^{3} = \left( \frac{3^2}{2} + 3(3) \right) - \left( \frac{(-1)^2}{2} + 3(-1) \right). \] Simplifying: \[ = \left( \frac{9}{2} + 9 \right) - \left( \frac{1}{2} - 3 \right) = \left( \frac{9}{2} + \frac{18}{2} \right) - \left( \frac{1}{2} - \frac{6}{2} \right) = \frac{27}{2} - \frac{-5}{2} = \frac{27}{2} + \frac{5}{2} = \frac{32}{2} = 16. \] ### Step 5: Total area Adding the two areas together: \[ A = \frac{33}{2} + 16 = \frac{33}{2} + \frac{32}{2} = \frac{65}{2}. \] Thus, the total area of the region is \( \boxed{\frac{65}{2}} \).
Three friends A, B, and C move out from the same location O at the same time in three different directions to reach their destinations. They move out on straight paths and decide that A and B after reaching their destinations will meet up with C at his pre-decided destination, following straight paths from A to C and B to C in such a way that \( \overrightarrow{OA} = \hat{i}, \overrightarrow{OB} = \hat{j} \), and \( \overrightarrow{OC} = 5 \hat{i} - 2 \hat{j} \), respectively.
Based upon the above information, answer the following questions:
(i) Complete the given figure to explain their entire movement plan along the respective vectors.}
(ii) Find vectors \( \overrightarrow{AC} \) and \( \overrightarrow{BC} \).}
(iii) (a) If \( \overrightarrow{a} = 2 \hat{i} - \hat{j} + 4 \hat{k} \), distance of O to A is 1 km, and from O to B is 2 km, then find the angle between \( \overrightarrow{OA} \) and \( \overrightarrow{OB} \). Also, find \( | \overrightarrow{a} \times \overrightarrow{b} | \).}
(iii) (b) If \( \overrightarrow{a} = 2 \hat{i} - \hat{j} + 4 \hat{k} \), find a unit vector perpendicular to \( (\overrightarrow{a} + \overrightarrow{b}) \) and \( (\overrightarrow{a} - \overrightarrow{b}) \).
Camphor is a waxy, colourless solid with strong aroma that evaporates through the process of sublimation if left in the open at room temperature.
(Cylindrical-shaped Camphor tablets) A cylindrical camphor tablet whose height is equal to its radius (r) evaporates when exposed to air such that the rate of reduction of its volume is proportional to its total surface area. Thus, the differential equation \( \frac{dV}{dt} = -kS \) is the differential equation, where \( V \) is the volume, \( S \) is the surface area, and \( t \) is the time in hours.
Based upon the above information, answer the following questions:
(i) Write the order and degree of the given differential equation.}
(ii) Substituting \( V = \pi r^3 \) and \( S = 2 \pi r^2 \), we get the differential equation \( \frac{dr}{dt} = \frac{2}{3}k \). Solve it, given that \( r(0) = 5 \) mm.}
(iii) (a) If it is given that \( r = 3 \) mm when \( t = 1 \) hour, find the value of \( k \). Hence, find \( t \) for \( r = 0 \) mm.}
(iii) (b) If it is given that \( r = 1 \) mm when \( t = 1 \) hour, find the value of \( k \). Hence, find \( t \) for \( r = 0 \) mm.