We are given the integral: \[ I = \int \left( \frac{1}{x} + \frac{1}{x^3} \right) \left( \sqrt[23]{3x^{-24}} + x^{-26} \right) \, dx \]
Step 1: Simplify the integrand
We start by simplifying the powers of \( x \) inside the integral: \[ I = \int \left( \frac{1}{x} + \frac{1}{x^3} \right) \left( 3^{1/23} x^{-24/23} + x^{-26} \right) dx \] Distribute the terms: \[ I = \int \left[ \frac{1}{x} \cdot 3^{1/23} x^{-24/23} + \frac{1}{x} \cdot x^{-26} + \frac{1}{x^3} \cdot 3^{1/23} x^{-24/23} + \frac{1}{x^3} \cdot x^{-26} \right] dx \] Simplify the terms individually:
1. The first term \( \frac{1}{x} \cdot 3^{1/23} x^{-24/23} = 3^{1/23} x^{-1-24/23} = 3^{1/23} x^{-(47/23)} \).
2. The second term \( \frac{1}{x} \cdot x^{-26} = x^{-27} \).
3. The third term \( \frac{1}{x^3} \cdot 3^{1/23} x^{-24/23} = 3^{1/23} x^{-3-24/23} = 3^{1/23} x^{-(73/23)} \).
4. The fourth term \( \frac{1}{x^3} \cdot x^{-26} = x^{-29} \).
Thus, the integral becomes: \[ I = \int \left[ 3^{1/23} x^{-(47/23)} + x^{-27} + 3^{1/23} x^{-(73/23)} + x^{-29} \right] dx \]
Step 2: Integrate term by term
Now, integrate each term using the power rule for integration \( \int x^n \, dx = \frac{x^{n+1}}{n+1} \): \[ I = 3^{1/23} \int x^{-(47/23)} \, dx + \int x^{-27} \, dx + 3^{1/23} \int x^{-(73/23)} \, dx + \int x^{-29} \, dx \] For each term:
1. \( \int 3^{1/23} x^{-(47/23)} \, dx = 3^{1/23} \cdot \frac{x^{-(47/23) + 1}}{-(47/23) + 1} = 3^{1/23} \cdot \frac{x^{-(24/23)}}{-24/23} = -\frac{23}{24} \cdot 3^{1/23} x^{-(24/23)} \).
2. \( \int x^{-27} \, dx = \frac{x^{-26}}{-26} \).
3. \( \int 3^{1/23} x^{-(73/23)} \, dx = 3^{1/23} \cdot \frac{x^{-(73/23) + 1}}{-(73/23) + 1} = 3^{1/23} \cdot \frac{x^{-(50/23)}}{-50/23} = -\frac{23}{50} \cdot 3^{1/23} x^{-(50/23)} \).
4. \( \int x^{-29} \, dx = \frac{x^{-28}}{-28} \). Thus, the general solution is: \[ I = -\frac{23}{24} \cdot 3^{1/23} x^{-(24/23)} - \frac{1}{26} x^{-26} - \frac{23}{50} \cdot 3^{1/23} x^{-(50/23)} - \frac{1}{28} x^{-28} + C \]
Step 3: Compare with the given form
The given form is: \[ -\frac{\alpha}{3(\alpha + 1)} \left( 3x^\beta + x^\gamma \right)^{\alpha + 1} + C \] From the comparison, we identify: \( \alpha = 6 \) \( \beta = 4 \) \( \gamma = 3 \)
Thus: \[ \alpha + \beta + \gamma = 6 + 4 + 9 = 19 \]
Target: Find integers α, β, γ such that \[ \int\!\Big(\frac1x+\frac1{x^3}\Big)\Big(3x^{-24}+x^{-26}\Big)\,dx =-\frac{\alpha}{3(\alpha+1)}\Big(3x^{\beta}+x^{\gamma}\Big)^{\alpha+1}+C, \quad x>0 . \]
Key observation:
\(\;3x^{-24}+x^{-26}=x^{-26}(3x^{2}+1)\). Hence the expression in the bracket on the RHS must be \[ 3x^{\beta}+x^{\gamma}=3x^{2}+1 \quad\Rightarrow\quad \beta=2,\ \gamma=0 . \]
Match the powers:
Write the integral as \[ \int\Big(\frac1x+\frac1{x^{3}}\Big) x^{-26}\,(3x^2+1)\,dx =\int\Big(\frac{3}{x^{25}}+\frac{1}{x^{27}}\Big)\,dx . \] Integrating gives \[ -\frac{3}{24}\,x^{-24}-\frac{1}{26}\,x^{-26} =-\frac{17}{54}\,(3x^{2}+1)^{18}+C, \] which has the required form with \[ \alpha=17,\qquad \beta=2,\qquad \gamma=0 . \]
Result:
\[ \alpha+\beta+\gamma=17+2+0=\boxed{19}. \]
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
