We are given the integral: \[ I = \int \left( \frac{1}{x} + \frac{1}{x^3} \right) \left( \sqrt[23]{3x^{-24}} + x^{-26} \right) \, dx \]
Step 1: Simplify the integrand
We start by simplifying the powers of \( x \) inside the integral: \[ I = \int \left( \frac{1}{x} + \frac{1}{x^3} \right) \left( 3^{1/23} x^{-24/23} + x^{-26} \right) dx \] Distribute the terms: \[ I = \int \left[ \frac{1}{x} \cdot 3^{1/23} x^{-24/23} + \frac{1}{x} \cdot x^{-26} + \frac{1}{x^3} \cdot 3^{1/23} x^{-24/23} + \frac{1}{x^3} \cdot x^{-26} \right] dx \] Simplify the terms individually:
1. The first term \( \frac{1}{x} \cdot 3^{1/23} x^{-24/23} = 3^{1/23} x^{-1-24/23} = 3^{1/23} x^{-(47/23)} \).
2. The second term \( \frac{1}{x} \cdot x^{-26} = x^{-27} \).
3. The third term \( \frac{1}{x^3} \cdot 3^{1/23} x^{-24/23} = 3^{1/23} x^{-3-24/23} = 3^{1/23} x^{-(73/23)} \).
4. The fourth term \( \frac{1}{x^3} \cdot x^{-26} = x^{-29} \).
Thus, the integral becomes: \[ I = \int \left[ 3^{1/23} x^{-(47/23)} + x^{-27} + 3^{1/23} x^{-(73/23)} + x^{-29} \right] dx \]
Step 2: Integrate term by term
Now, integrate each term using the power rule for integration \( \int x^n \, dx = \frac{x^{n+1}}{n+1} \): \[ I = 3^{1/23} \int x^{-(47/23)} \, dx + \int x^{-27} \, dx + 3^{1/23} \int x^{-(73/23)} \, dx + \int x^{-29} \, dx \] For each term:
1. \( \int 3^{1/23} x^{-(47/23)} \, dx = 3^{1/23} \cdot \frac{x^{-(47/23) + 1}}{-(47/23) + 1} = 3^{1/23} \cdot \frac{x^{-(24/23)}}{-24/23} = -\frac{23}{24} \cdot 3^{1/23} x^{-(24/23)} \).
2. \( \int x^{-27} \, dx = \frac{x^{-26}}{-26} \).
3. \( \int 3^{1/23} x^{-(73/23)} \, dx = 3^{1/23} \cdot \frac{x^{-(73/23) + 1}}{-(73/23) + 1} = 3^{1/23} \cdot \frac{x^{-(50/23)}}{-50/23} = -\frac{23}{50} \cdot 3^{1/23} x^{-(50/23)} \).
4. \( \int x^{-29} \, dx = \frac{x^{-28}}{-28} \). Thus, the general solution is: \[ I = -\frac{23}{24} \cdot 3^{1/23} x^{-(24/23)} - \frac{1}{26} x^{-26} - \frac{23}{50} \cdot 3^{1/23} x^{-(50/23)} - \frac{1}{28} x^{-28} + C \]
Step 3: Compare with the given form
The given form is: \[ -\frac{\alpha}{3(\alpha + 1)} \left( 3x^\beta + x^\gamma \right)^{\alpha + 1} + C \] From the comparison, we identify: \( \alpha = 6 \) \( \beta = 4 \) \( \gamma = 3 \)
Thus: \[ \alpha + \beta + \gamma = 6 + 4 + 9 = 19 \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: