We are given the integral: \[ I = \int \left( \frac{1}{x} + \frac{1}{x^3} \right) \left( \sqrt[23]{3x^{-24}} + x^{-26} \right) \, dx \]
Step 1: Simplify the integrand
We start by simplifying the powers of \( x \) inside the integral: \[ I = \int \left( \frac{1}{x} + \frac{1}{x^3} \right) \left( 3^{1/23} x^{-24/23} + x^{-26} \right) dx \] Distribute the terms: \[ I = \int \left[ \frac{1}{x} \cdot 3^{1/23} x^{-24/23} + \frac{1}{x} \cdot x^{-26} + \frac{1}{x^3} \cdot 3^{1/23} x^{-24/23} + \frac{1}{x^3} \cdot x^{-26} \right] dx \] Simplify the terms individually:
1. The first term \( \frac{1}{x} \cdot 3^{1/23} x^{-24/23} = 3^{1/23} x^{-1-24/23} = 3^{1/23} x^{-(47/23)} \).
2. The second term \( \frac{1}{x} \cdot x^{-26} = x^{-27} \).
3. The third term \( \frac{1}{x^3} \cdot 3^{1/23} x^{-24/23} = 3^{1/23} x^{-3-24/23} = 3^{1/23} x^{-(73/23)} \).
4. The fourth term \( \frac{1}{x^3} \cdot x^{-26} = x^{-29} \).
Thus, the integral becomes: \[ I = \int \left[ 3^{1/23} x^{-(47/23)} + x^{-27} + 3^{1/23} x^{-(73/23)} + x^{-29} \right] dx \]
Step 2: Integrate term by term
Now, integrate each term using the power rule for integration \( \int x^n \, dx = \frac{x^{n+1}}{n+1} \): \[ I = 3^{1/23} \int x^{-(47/23)} \, dx + \int x^{-27} \, dx + 3^{1/23} \int x^{-(73/23)} \, dx + \int x^{-29} \, dx \] For each term:
1. \( \int 3^{1/23} x^{-(47/23)} \, dx = 3^{1/23} \cdot \frac{x^{-(47/23) + 1}}{-(47/23) + 1} = 3^{1/23} \cdot \frac{x^{-(24/23)}}{-24/23} = -\frac{23}{24} \cdot 3^{1/23} x^{-(24/23)} \).
2. \( \int x^{-27} \, dx = \frac{x^{-26}}{-26} \).
3. \( \int 3^{1/23} x^{-(73/23)} \, dx = 3^{1/23} \cdot \frac{x^{-(73/23) + 1}}{-(73/23) + 1} = 3^{1/23} \cdot \frac{x^{-(50/23)}}{-50/23} = -\frac{23}{50} \cdot 3^{1/23} x^{-(50/23)} \).
4. \( \int x^{-29} \, dx = \frac{x^{-28}}{-28} \). Thus, the general solution is: \[ I = -\frac{23}{24} \cdot 3^{1/23} x^{-(24/23)} - \frac{1}{26} x^{-26} - \frac{23}{50} \cdot 3^{1/23} x^{-(50/23)} - \frac{1}{28} x^{-28} + C \]
Step 3: Compare with the given form
The given form is: \[ -\frac{\alpha}{3(\alpha + 1)} \left( 3x^\beta + x^\gamma \right)^{\alpha + 1} + C \] From the comparison, we identify: \( \alpha = 6 \) \( \beta = 4 \) \( \gamma = 3 \)
Thus: \[ \alpha + \beta + \gamma = 6 + 4 + 9 = 19 \]
Target: Find integers α, β, γ such that \[ \int\!\Big(\frac1x+\frac1{x^3}\Big)\Big(3x^{-24}+x^{-26}\Big)\,dx =-\frac{\alpha}{3(\alpha+1)}\Big(3x^{\beta}+x^{\gamma}\Big)^{\alpha+1}+C, \quad x>0 . \]
Key observation:
\(\;3x^{-24}+x^{-26}=x^{-26}(3x^{2}+1)\). Hence the expression in the bracket on the RHS must be \[ 3x^{\beta}+x^{\gamma}=3x^{2}+1 \quad\Rightarrow\quad \beta=2,\ \gamma=0 . \]
Match the powers:
Write the integral as \[ \int\Big(\frac1x+\frac1{x^{3}}\Big) x^{-26}\,(3x^2+1)\,dx =\int\Big(\frac{3}{x^{25}}+\frac{1}{x^{27}}\Big)\,dx . \] Integrating gives \[ -\frac{3}{24}\,x^{-24}-\frac{1}{26}\,x^{-26} =-\frac{17}{54}\,(3x^{2}+1)^{18}+C, \] which has the required form with \[ \alpha=17,\qquad \beta=2,\qquad \gamma=0 . \]
Result:
\[ \alpha+\beta+\gamma=17+2+0=\boxed{19}. \]
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
