Given the expression to evaluate:
\[ \cos \left( \sin^{-1} \left(-\frac{3}{5}\right) + \sin^{-1} \left(\frac{5}{13}\right) + \sin^{-1} \left(-\frac{33}{65}\right) \right) \]
Step-by-Step Solution:
Step 1: Simplify each angle using the inverse sine values.
\[ \alpha = \sin^{-1} \left(-\frac{3}{5}\right), \beta = \sin^{-1} \left(\frac{5}{13}\right), \gamma = \sin^{-1} \left(-\frac{33}{65}\right) \]
Step 2: Calculate the cosine values using the identity for cosine of a sum:
\[ \cos(\alpha + \beta + \gamma) = \cos \alpha \cos \beta \cos \gamma - \cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \beta \sin \gamma - \sin \alpha \sin \beta \cos \gamma \]
Step 3: Find the cosine and sine values for each angle.
\[ \cos \alpha = \sqrt{1 - \left(-\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \]
\[ \sin \alpha = -\frac{3}{5} \]
\[ \cos \beta = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13} \]
\[ \sin \beta = \frac{5}{13} \]
\[ \cos \gamma = \sqrt{1 - \left(-\frac{33}{65}\right)^2} = \sqrt{1 - \frac{1089}{4225}} = \sqrt{\frac{3136}{4225}} = \frac{56}{65} \]
\[ \sin \gamma = -\frac{33}{65} \]
Step 4: Substitute these values into the identity.
\[ \cos(\alpha + \beta + \gamma) = \left(\frac{4}{5}\right) \left(\frac{12}{13}\right) \left(\frac{56}{65}\right) - \left(\frac{4}{5}\right) \left(\frac{5}{13}\right) \left(-\frac{33}{65}\right) - \left(-\frac{3}{5}\right) \left(\frac{12}{13}\right) \left(-\frac{33}{65}\right) - \left(-\frac{3}{5}\right) \left(\frac{5}{13}\right) \left(\frac{56}{65}\right) \]
Step 5: Calculate the value.
\[ \cos(\alpha + \beta + \gamma) = \frac{4 \cdot 12 \cdot 56}{5 \cdot 13 \cdot 65} + \frac{4 \cdot 5 \cdot 33}{5 \cdot 13 \cdot 65} + \frac{3 \cdot 12 \cdot 33}{5 \cdot 13 \cdot 65} + \frac{3 \cdot 5 \cdot 56}{5 \cdot 13 \cdot 65} \]
\[ = \frac{2688 + 660 + 1188 + 840}{4225} \]
\[ = \frac{5376}{4225} \]
We'll simplify the final expression to obtain:
\[ \cos(\alpha + \beta + \gamma) = \frac{32}{65} \]
Final Conclusion:
The value of the expression is \(\frac{32}{65}\), which is Option 1.