We are asked to find:
\[
\tan \left( \frac{1}{2} \left( \tan^{-1} x + \tan^{-1} \frac{1}{x} \right) \right)
\]
We know the formula for \( \tan^{-1} a + \tan^{-1} b \) is:
\[
\tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right)
\]
provided that \( ab& Lt;1 \).
For our case:
\[
\tan^{-1} x + \tan^{-1} \frac{1}{x} = \tan^{-1} \left( \frac{x + \frac{1}{x}}{1 - x \cdot \frac{1}{x}} \right)
\]
\[
= \tan^{-1} \left( \frac{x + \frac{1}{x}}{0} \right) = \tan^{-1} (\infty)
\]
The value of \( \tan^{-1} (\infty) \) is \( \frac{\pi}{2} \). Thus:
\[
\tan \left( \frac{1}{2} \cdot \frac{\pi}{2} \right) = \tan \left( \frac{\pi}{4} \right) = 1
\]
Thus, the correct answer is \( 1 \).