Question:

Evaluate: $ \tan^{-1} \left[ 2 \sin \left( 2 \cos^{-1} \frac{\sqrt{3}}{2} \right) \right]$

Show Hint

When evaluating inverse trigonometric functions, simplify the expression step by step using known values for sine and cosine.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

We start by evaluating $ \cos^{-1} \frac{\sqrt{3}}{2}$. We know that $ \cos^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{6}$. Now, substitute this value into the expression: \[ \tan^{-1} \left[ 2 \sin \left( 2 \times \frac{\pi}{6} \right) \right] = \tan^{-1} \left[ 2 \sin \left( \frac{\pi}{3} \right) \right] = \tan^{-1} \left[ 2 \times \frac{\sqrt{3}}{2} \right] = \tan^{-1} (\sqrt{3}) \] We know that \( \tan^{-1} (\sqrt{3}) = \frac{\pi}{3} \), so the final answer is: \[ \frac{\pi}{6} \]
Was this answer helpful?
0
12

Questions Asked in CBSE CLASS XII exam

View More Questions