We start by evaluating $ \cos^{-1} \frac{\sqrt{3}}{2}$.
We know that $ \cos^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{6}$.
Now, substitute this value into the expression:
\[
\tan^{-1} \left[ 2 \sin \left( 2 \times \frac{\pi}{6} \right) \right]
= \tan^{-1} \left[ 2 \sin \left( \frac{\pi}{3} \right) \right]
= \tan^{-1} \left[ 2 \times \frac{\sqrt{3}}{2} \right]
= \tan^{-1} (\sqrt{3})
\]
We know that \( \tan^{-1} (\sqrt{3}) = \frac{\pi}{3} \), so the final answer is:
\[
\frac{\pi}{6}
\]