To solve for the vertical component of velocity of the electron, we can utilize the electric force acting on the electron and equate it to the mass times acceleration. The steps are as follows:
Step 1: Calculate the force on the electron
The electric force \( F \) on the electron is given by:
\( F = e \cdot E \)
Where \( e = 1.6 \times 10^{-19} \) C (charge of electron) and \( E = 9.1 \) V/cm, which is \( 910 \) V/m when converted to SI units.
\( F = 1.6 \times 10^{-19} \times 910 = 1.456 \times 10^{-16} \, \text{N} \)
Step 2: Calculate the acceleration of the electron
Using the formula \( F = m \cdot a \), where \( m = 9.1 \times 10^{-31} \) kg (mass of the electron),
\( a = \frac{F}{m} = \frac{1.456 \times 10^{-16}}{9.1 \times 10^{-31}} = 1.6 \times 10^{14} \, \text{m/s}^2 \)
Step 3: Determine the time electron spends between the plates
The horizontal velocity \( v_x \) is constant at \( 10^6 \) m/s. The time \( t \) to traverse the 10 cm (0.1 m) length of the plates is:
\( t = \frac{0.1}{10^6} = 10^{-7} \, \text{s} \)
Step 4: Calculate the vertical component of velocity
The vertical velocity \( v_y \) can be found using the equation:
\( v_y = a \cdot t \)
\( v_y = 1.6 \times 10^{14} \times 10^{-7} = 16 \times 10^6 \, \text{m/s} \)
Thus, the vertical component of velocity of the electron is \( 16 \times 10^6 \) m/s.
As shown in the diagram, an electron enters perpendicularly into a magnetic field. Using Fleming’s Left-Hand Rule, determine the direction of the force experienced by the electron.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: