To solve for the vertical component of velocity of the electron, we can utilize the electric force acting on the electron and equate it to the mass times acceleration. The steps are as follows:
Step 1: Calculate the force on the electron
The electric force \( F \) on the electron is given by:
\( F = e \cdot E \)
Where \( e = 1.6 \times 10^{-19} \) C (charge of electron) and \( E = 9.1 \) V/cm, which is \( 910 \) V/m when converted to SI units.
\( F = 1.6 \times 10^{-19} \times 910 = 1.456 \times 10^{-16} \, \text{N} \)
Step 2: Calculate the acceleration of the electron
Using the formula \( F = m \cdot a \), where \( m = 9.1 \times 10^{-31} \) kg (mass of the electron),
\( a = \frac{F}{m} = \frac{1.456 \times 10^{-16}}{9.1 \times 10^{-31}} = 1.6 \times 10^{14} \, \text{m/s}^2 \)
Step 3: Determine the time electron spends between the plates
The horizontal velocity \( v_x \) is constant at \( 10^6 \) m/s. The time \( t \) to traverse the 10 cm (0.1 m) length of the plates is:
\( t = \frac{0.1}{10^6} = 10^{-7} \, \text{s} \)
Step 4: Calculate the vertical component of velocity
The vertical velocity \( v_y \) can be found using the equation:
\( v_y = a \cdot t \)
\( v_y = 1.6 \times 10^{14} \times 10^{-7} = 16 \times 10^6 \, \text{m/s} \)
Thus, the vertical component of velocity of the electron is \( 16 \times 10^6 \) m/s.
Given:
Length of plates, \( L = 10\, \text{cm} = 0.1\, \text{m} \)
Horizontal velocity, \( v_x = 10^6\, \text{m/s} \)
Electric field, \( E = 9.1\, \text{V/cm} = 9.1 \times 10^2\, \text{V/m} \)
Charge of electron, \( e = 1.6 \times 10^{-19}\, \text{C} \)
Mass of electron, \( m = 9.1 \times 10^{-31}\, \text{kg} \)
Time spent between plates:
\[ t = \frac{L}{v_x} = \frac{0.1}{10^6} = 1 \times 10^{-7}\, \text{s} \]
Force on electron:
\[ F = eE = (1.6 \times 10^{-19})(9.1 \times 10^2) = 1.456 \times 10^{-16}\, \text{N} \]
Acceleration:
\[ a = \frac{F}{m} = \frac{1.456 \times 10^{-16}}{9.1 \times 10^{-31}} = 1.6 \times 10^{14}\, \text{m/s}^2 \]
Vertical velocity:
\[ v_y = a t = (1.6 \times 10^{14})(1 \times 10^{-7}) = 1.6 \times 10^7\, \text{m/s} \]
∴ The vertical component of velocity of the electron is:
\[ \boxed{v_y = 1.6 \times 10^7\, \text{m/s}} \]
Hence, correct option: Option 3 — \(16 \times 10^6\, \text{m/s}\)
An air filled parallel plate electrostatic actuator is shown in the figure. The area of each capacitor plate is $100 \mu m \times 100 \mu m$. The distance between the plates $d_0 = 1 \mu m$ when both the capacitor charge and spring restoring force are zero as shown in Figure (a). A linear spring of constant $k = 0.01 N/m$ is connected to the movable plate. When charge is supplied to the capacitor using a current source, the top plate moves as shown in Figure (b). The magnitude of minimum charge (Q) required to momentarily close the gap between the plates is ________ $\times 10^{-14} C$ (rounded off to two decimal places). Note: Assume a full range of motion is possible for the top plate and there is no fringe capacitance. The permittivity of free space is $\epsilon_0 = 8.85 \times 10^{-12} F/m$ and relative permittivity of air ($\epsilon_r$) is 1.
