Step 1: Use the cosine rule to find angle \( A \).
By the cosine rule:
\[
\cos A = \frac{b^2 + c^2 - a^2}{2bc}
\]
Substitute the given values:
\[
\cos A = \frac{14^2 + 15^2 - 13^2}{2 \times 14 \times 15} = \frac{196 + 225 - 169}{420} = \frac{252}{420} = \frac{3}{5}
\]
Step 2: Find \( \sec A \).
Since \( \sec A = \frac{1}{\cos A} \), we have:
\[
\sec A = \frac{1}{\frac{3}{5}} = \frac{5}{3}
\]
Step 3: Use the sine rule to find angle \( A/2 \).
Using the sine rule for angle \( \frac{A}{2} \), we apply the half angle formula:
\[
\sin \frac{A}{2} = \sqrt{\frac{1 - \cos A}{2}}
\]
Substitute \( \cos A = \frac{3}{5} \):
\[
\sin \frac{A}{2} = \sqrt{\frac{1 - \frac{3}{5}}{2}} = \sqrt{\frac{\frac{2}{5}}{2}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}}
\]
Step 4: Find \( \csc \frac{A}{2} \).
Since \( \csc \frac{A}{2} = \frac{1}{\sin \frac{A}{2}} \), we have:
\[
\csc \frac{A}{2} = \frac{1}{\frac{1}{\sqrt{5}}} = \sqrt{5}
\]
Final Answer: (i) \( \sec A = \boxed{\frac{5}{3}} \) (ii) \( \csc \frac{A}{2} = \boxed{\sqrt{5}} \)
The graph shown below depicts: