Question:

In \( \triangle ABC \), if \( a = 13 \), \( b = 14 \), and \( c = 15 \), then find the values of:
(i) \( \sec A \)
(ii) \( \csc \frac{A}{2} \)

Show Hint

To find the secant and cosecant, use the cosine rule to find angles and apply the appropriate trigonometric identities.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Use the cosine rule to find angle \( A \).
By the cosine rule: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] Substitute the given values: \[ \cos A = \frac{14^2 + 15^2 - 13^2}{2 \times 14 \times 15} = \frac{196 + 225 - 169}{420} = \frac{252}{420} = \frac{3}{5} \]

Step 2: Find \( \sec A \).
Since \( \sec A = \frac{1}{\cos A} \), we have: \[ \sec A = \frac{1}{\frac{3}{5}} = \frac{5}{3} \]

Step 3: Use the sine rule to find angle \( A/2 \).
Using the sine rule for angle \( \frac{A}{2} \), we apply the half angle formula: \[ \sin \frac{A}{2} = \sqrt{\frac{1 - \cos A}{2}} \] Substitute \( \cos A = \frac{3}{5} \): \[ \sin \frac{A}{2} = \sqrt{\frac{1 - \frac{3}{5}}{2}} = \sqrt{\frac{\frac{2}{5}}{2}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} \]

Step 4: Find \( \csc \frac{A}{2} \).
Since \( \csc \frac{A}{2} = \frac{1}{\sin \frac{A}{2}} \), we have: \[ \csc \frac{A}{2} = \frac{1}{\frac{1}{\sqrt{5}}} = \sqrt{5} \]

Final Answer: (i) \( \sec A = \boxed{\frac{5}{3}} \) (ii) \( \csc \frac{A}{2} = \boxed{\sqrt{5}} \)

Was this answer helpful?
0
0