To solve this problem, we need to find the length of an open tube when the ninth harmonic of a closed tube matches the fourth harmonic of the open tube.
For a closed organ pipe (closed at one end), the formula for the frequency of the nth harmonic is:
\( f_n = \frac{n v_1}{4L_1} \)
where \( n \) is an odd integer, \( v_1 \) is the speed of sound in the gas inside the closed tube, and \( L_1 \) is the length of the closed tube.
For an open organ pipe, the formula for the frequency of the nth harmonic is:
\( f_n = \frac{n v_2}{2L_2} \)
where \( n \) is any integer, \( v_2 \) is the speed of sound in the gas inside the open tube, and \( L_2 \) is the length of the open tube.
Given: The ninth harmonic of the closed tube (\( n=9 \)) matches the fourth harmonic of the open tube (\( n=4 \)):
\( \frac{9 v_1}{4 \times 10} = \frac{4 v_2}{2L_2} \)
Simplifying that:
\( \frac{9 v_1}{40} = \frac{4 v_2}{2L_2} \)
\( \frac{9 v_1}{40} = \frac{2 v_2}{L_2} \)
\( L_2 = \frac{80 v_2}{9 v_1} \)
The speed of sound \( v \) in a medium is given by:
\( v = \sqrt{\frac{B}{\rho}} \)
where \( B \) is the bulk modulus, and \( \rho \) is the density of the gas. Given that the bulk modulus \( B \) is the same for both gases, the speed ratio is:
\( \frac{v_1}{v_2} = \sqrt{\frac{\rho_2}{\rho_1}} \)
Given the density ratio \( \rho_1 : \rho_2 = 1 : 16 \):
\( \frac{v_1}{v_2} = \sqrt{\frac{16}{1}} = 4 \)
Substituting \( \frac{v_1}{v_2} = 4 \) into the equation for \( L_2 \):
\( L_2 = \frac{80 \times v_2}{9 \times 4 \times v_2} = \frac{80}{36} = \frac{20}{9} \, \text{cm} \)
Thus, the length of the open tube is \( \frac{20}{9} \, \text{cm} \).
A sub-atomic particle of mass \( 10^{-30} \) kg is moving with a velocity of \( 2.21 \times 10^6 \) m/s. Under the matter wave consideration, the particle will behave closely like (h = \( 6.63 \times 10^{-34} \) J.s)
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: