Step 1: We are given the following summation expression:
\[ s = \sum_{r=1}^{n} \frac{4r}{4 + 3r^2 + r^4} \] Continuing with different forms of summation, we get: \[ \sum_{r=1}^{n} \frac{2r}{(r^2 + 2)^2 - r^2} \] and the next part: \[ \sum_{r=1}^{n} \frac{(r^2 + 2 + r) - (r^2 + 2 - r)}{(r^2 + 2 + r)(r^2 + 2 - r)}. \] After simplifying, the summation becomes: \[ s_n = 2 \left[ \frac{1}{2} - \frac{1}{4} - \frac{1}{8} \right] = 1. \]
Step 2: General Expression for \( s_n \):
\[ s_n = \frac{n^2 + n}{n^2 + n + 2}. \]
Step 3: Substituting Values for \( m \) and \( n \):
Substitute \( m = 20 \) and calculate: \[ s_{20} = \frac{400 + 20 + 2}{400 + 20 + 2} = \frac{420}{422}. \]
Step 4: Finally, we compute \( m + n \):
\[ m + n = 210 + 211 = 421. \]
If the sum of the first 10 terms of the series \[ \frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \ldots \] is \(\frac{m}{n}\), where \(\gcd(m, n) = 1\), then \(m + n\) is equal to _____.
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :


For the circuit shown above, the equivalent gate is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: