We are given that \( \alpha \) is a root of the equation \( x^2 + x + 1 = 0 \), so: \[ \alpha = \omega \] where \( \omega \) is a cube root of unity.
Therefore, \( \alpha = \omega \) and we have the identity \( \omega^3 = 1 \).
Now, consider the given summation: \[ \sum_{k=1}^{n} \left( \alpha^k + \frac{1}{\alpha^k} \right)^2 \] Since \( \alpha = \omega \), we can write the expression as: \[ \left( \omega^k + \frac{1}{\omega^k} \right)^2 = \omega^{2k} + \omega^k + 2 \] Now, simplifying the sum: \[ \sum_{k=1}^{n} \left( \omega^{2k} + \omega^k + 2 \right) \] This simplifies to: \[ \sum_{k=1}^{n} \omega^{2k} + \sum_{k=1}^{n} \omega^k + 2n \] We know that \( \omega^3 = 1 \), so the powers of \( \omega \) repeat every 3 terms.
Therefore, the sum can be simplified as follows.
The sum of powers of \( \omega \) for \( n = 3m \) (where \( m \) is some integer) is 0 for the periodic terms, and we are left with: \[ 2n = 20 \quad \Rightarrow \quad n = 10 \]
Thus, the correct answer is \( 11 \).
Step 1: The expression is:
\[ \alpha = \omega \]
Step 2: Simplifying the equation:
\[ \left( \omega^k + \frac{1}{\omega^k} \right)^2 = \omega^{2k} + \frac{1}{\omega^{2k}} + 2 \] This simplifies to: \[ \omega^{2k} + \omega^k + 2 \quad \Rightarrow \quad \omega^{3k} = 1 \]
Step 3: Summing the series:
\[ \sum_{k=1}^{n} \left( \omega^{2k} + \omega^k + 2 \right) = 20 \] This simplifies to: \[ \left( \omega^2 + \omega^4 + \omega^6 + \cdots + \omega^{2n} \right) + \left( \omega + \omega^2 + \omega^3 + \cdots + \omega^n \right) + 2n = 20 \]
Step 4: Testing possible values for \( n \):
If \( n = 3m \), then:
\[ 0 + 0 + 2n = 20 \quad \Rightarrow \quad n = 10 \quad (\text{not satisfied}) \]
If \( n = 3m + 1 \), then:
\[ \omega^2 + \omega + 2n = 20 \] \[ -1 + 2n = 20 \quad \Rightarrow \quad n = \frac{21}{2} \quad (\text{not possible}) \]
If \( n = 3m + 2 \), then:
\[ \left( \omega^8 + \omega^{10} \right) + \left( \omega^4 + \omega^5 \right) + 2n = 20 \] This simplifies to: \[ \left( \omega^2 + \omega \right) + \left( \omega + \omega^2 \right) + 2n = 20 \] \[ 2n = 22 \quad \Rightarrow \quad n = 11 \]
Step 5: Final solution:
The value of \( n \) is \( 11 \), which satisfies \( n = 3m + 2 \).
If the sum of the first 10 terms of the series \[ \frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \ldots \] is \(\frac{m}{n}\), where \(\gcd(m, n) = 1\), then \(m + n\) is equal to _____.
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :


For the circuit shown above, the equivalent gate is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: