If the sum of the first 10 terms of the series \[ \frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \ldots \] is \(\frac{m}{n}\), where \(\gcd(m, n) = 1\), then \(m + n\) is equal to _____.
We need the sum of the first 10 terms of the series
\[ S_{10}=\sum_{n=1}^{10}\frac{4n}{1+4n^{4}}. \]Factor the quartic in the denominator and use partial fractions to obtain a telescoping series.
\[ 1+4n^{4}=(2n^{2}-2n+1)(\,2n^{2}+2n+1\,). \]Hence
\[ \frac{4n}{1+4n^{4}} =\frac{4n}{(2n^{2}-2n+1)(2n^{2}+2n+1)} =\frac{1}{2n^{2}-2n+1}-\frac{1}{2n^{2}+2n+1}. \]Step 1: Rewrite each term using the identity above and sum from \(n=1\) to \(10\):
\[ S_{10}=\sum_{n=1}^{10}\left(\frac{1}{2n^{2}-2n+1}-\frac{1}{2n^{2}+2n+1}\right). \]Step 2: Observe telescoping: the negative term for \(n\) cancels the positive term for \(n+1\), since
\[ 2(n+1)^{2}-2(n+1)+1=2n^{2}+2n+1. \]Step 3: After cancellation only the first positive and the last negative terms remain:
\[ S_{10}=\frac{1}{2\cdot1^{2}-2\cdot1+1}-\frac{1}{2\cdot10^{2}+2\cdot10+1} =1-\frac{1}{221} =\frac{220}{221}. \]With \( \dfrac{m}{n}=\dfrac{220}{221} \) in lowest terms, \( m+n=220+221=\boxed{441} \).
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: