$1.5 \times 10^{-4} \text{ Pascals}$
$6 \times 10^{-5} \text{ Pascals}$
$3 \times 10^{-5} \text{ Pascals} $
\( P_{rad} = \frac{2I}{C} \)
Where I = intensity at surface C = Speed of light \( Power = \frac{450}{Area} = \frac{450}{4\pi r^2} \)
\( I = \frac{450}{4\pi \times 4} = \frac{450}{16\pi} \)
\( P_{rad} = \frac{2 \times 450}{16\pi \times 3 \times 10^8} = \frac{150}{8\pi \times 10^8} \)
\( = 5.97 \times 10^{-8} \approx 6 \times 10^{-8} \) Pascals
Consider the following logic circuit.
The output is Y = 0 when :
The logic gate equivalent to the combination of logic gates shown in the figure is
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .