\[ \text{Graph 1: } \]
\[ \text{Graph 2: } \] 
\[ \text{Graph 3: } \] 
\[ \text{Graph 4: } \] 
The kinetic energy \( K \) of a particle is given by: \[ K = \frac{1}{2} m v^2, \] where \( v \) is the velocity of the particle. The velocity is the derivative of the displacement \( x(t) \) with respect to time: \[ v(t) = \frac{d}{dt} \left( x_0 \sin^2 \left( \frac{\pi t}{T} \right) \right) = 2x_0 \sin \left( \frac{\pi t}{T} \right) \cos \left( \frac{\pi t}{T} \right) \frac{\pi}{T}. \] Thus, the velocity is proportional to \( \sin \left( \frac{\pi t}{T} \right) \), and the kinetic energy is proportional to the square of the velocity, which results in a graph where the kinetic energy increases as the particle moves from the origin to its maximum displacement and decreases symmetrically thereafter.
Final Answer: Graph 1.

To obtain the given truth table, the following logic gate should be placed at G:
Which of the following circuits has the same output as that of the given circuit?

For the circuit shown above, the equivalent gate is:
Consider the following logic circuit.
The output is Y = 0 when :
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: