\[ \text{Graph 1: } \]
\[ \text{Graph 2: } \] 
\[ \text{Graph 3: } \] 
\[ \text{Graph 4: } \] 
The kinetic energy \( K \) of a particle is given by: \[ K = \frac{1}{2} m v^2, \] where \( v \) is the velocity of the particle. The velocity is the derivative of the displacement \( x(t) \) with respect to time: \[ v(t) = \frac{d}{dt} \left( x_0 \sin^2 \left( \frac{\pi t}{T} \right) \right) = 2x_0 \sin \left( \frac{\pi t}{T} \right) \cos \left( \frac{\pi t}{T} \right) \frac{\pi}{T}. \] Thus, the velocity is proportional to \( \sin \left( \frac{\pi t}{T} \right) \), and the kinetic energy is proportional to the square of the velocity, which results in a graph where the kinetic energy increases as the particle moves from the origin to its maximum displacement and decreases symmetrically thereafter.
Final Answer: Graph 1.



Which of the following circuits has the same output as that of the given circuit?

A particle of mass \(m\) falls from rest through a resistive medium having resistive force \(F=-kv\), where \(v\) is the velocity of the particle and \(k\) is a constant. Which of the following graphs represents velocity \(v\) versus time \(t\)? 