For the circuit shown above, the equivalent gate is:
Let's break down this logic circuit step by step to figure out the equivalent gate.
1. First Stage:
The inputs $ A $ and $ B $ go into a NAND gate. The output of a NAND gate is the negation of the AND operation. So, the output here is:
$ \overline{A \cdot B} $
2. Second Stage (Top):
Input $ B $ also goes into a NOT gate. The output of the NOT gate is the complement of the input, which is:
$ \overline{B} $
3. Third Stage (Top):
The outputs from the first and second stages, $ \overline{A \cdot B} $ and $ \overline{B} $, are fed into an AND gate. The output of this AND gate is:
$ (\overline{A \cdot B}) \cdot (\overline{B}) $
4. Second Stage (Bottom):
Inputs $ A $ and $ B $ go into an OR gate. The output of an OR gate is:
$ A + B $
5. Third Stage (Bottom):
The output of the OR gate, $ A + B $, goes into a NOT gate. The output of this NOT gate is:
$ \overline{A + B} $
6. Final Stage:
The outputs from the third stage (top) and the third stage (bottom), $ (\overline{A \cdot B}) \cdot (\overline{B}) $ and $ \overline{A + B} $, are fed into an OR gate. The final output $ Y $ is therefore:
$ Y = [(\overline{A \cdot B}) \cdot (\overline{B})] + \overline{A + B} $
Simplifying the Expression Using Boolean Algebra:
Using De Morgan's Laws, we rewrite $ \overline{A \cdot B} $ as $ \overline{A} + \overline{B} $. Substituting this into the expression for $ Y $:
$ Y = [(\overline{A} + \overline{B}) \cdot \overline{B}] + (\overline{A} \cdot \overline{B}) $
Distribute $ \overline{B} $ in the first term:
$ Y = (\overline{A} \cdot \overline{B}) + (\overline{B} \cdot \overline{B}) + (\overline{A} \cdot \overline{B}) $
Simplify $ \overline{B} \cdot \overline{B} $ to $ \overline{B} $:
$ Y = (\overline{A} \cdot \overline{B}) + \overline{B} + (\overline{A} \cdot \overline{B}) $
Combine like terms:
$ Y = \overline{B} + (\overline{A} \cdot \overline{B}) $
Factor out $ \overline{B} $:
$ Y = \overline{B} (1 + \overline{A}) $
Simplify $ 1 + \overline{A} $ to $ 1 $:
$ Y = \overline{B} \cdot 1 $
$ Y = \overline{B} $
Final Answer:
The equivalent gate for the given circuit is a NOT gate with input $ B $.
The logic gate equivalent to the circuit given in the figure is
The logic gate equivalent to the combination of logic gates shown in the figure is
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.