For the circuit shown above, the equivalent gate is:
Let's break down this logic circuit step by step to figure out the equivalent gate.
1. First Stage:
The inputs $ A $ and $ B $ go into a NAND gate. The output of a NAND gate is the negation of the AND operation. So, the output here is:
$ \overline{A \cdot B} $
2. Second Stage (Top):
Input $ B $ also goes into a NOT gate. The output of the NOT gate is the complement of the input, which is:
$ \overline{B} $
3. Third Stage (Top):
The outputs from the first and second stages, $ \overline{A \cdot B} $ and $ \overline{B} $, are fed into an AND gate. The output of this AND gate is:
$ (\overline{A \cdot B}) \cdot (\overline{B}) $
4. Second Stage (Bottom):
Inputs $ A $ and $ B $ go into an OR gate. The output of an OR gate is:
$ A + B $
5. Third Stage (Bottom):
The output of the OR gate, $ A + B $, goes into a NOT gate. The output of this NOT gate is:
$ \overline{A + B} $
6. Final Stage:
The outputs from the third stage (top) and the third stage (bottom), $ (\overline{A \cdot B}) \cdot (\overline{B}) $ and $ \overline{A + B} $, are fed into an OR gate. The final output $ Y $ is therefore:
$ Y = [(\overline{A \cdot B}) \cdot (\overline{B})] + \overline{A + B} $
Simplifying the Expression Using Boolean Algebra:
Using De Morgan's Laws, we rewrite $ \overline{A \cdot B} $ as $ \overline{A} + \overline{B} $. Substituting this into the expression for $ Y $:
$ Y = [(\overline{A} + \overline{B}) \cdot \overline{B}] + (\overline{A} \cdot \overline{B}) $
Distribute $ \overline{B} $ in the first term:
$ Y = (\overline{A} \cdot \overline{B}) + (\overline{B} \cdot \overline{B}) + (\overline{A} \cdot \overline{B}) $
Simplify $ \overline{B} \cdot \overline{B} $ to $ \overline{B} $:
$ Y = (\overline{A} \cdot \overline{B}) + \overline{B} + (\overline{A} \cdot \overline{B}) $
Combine like terms:
$ Y = \overline{B} + (\overline{A} \cdot \overline{B}) $
Factor out $ \overline{B} $:
$ Y = \overline{B} (1 + \overline{A}) $
Simplify $ 1 + \overline{A} $ to $ 1 $:
$ Y = \overline{B} \cdot 1 $
$ Y = \overline{B} $
Final Answer:
The equivalent gate for the given circuit is a NOT gate with input $ B $.
Which of the following circuits has the same output as that of the given circuit?
Consider the following logic circuit.
The output is Y = 0 when :
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Two vessels A and B are connected via stopcock. Vessel A is filled with a gas at a certain pressure. The entire assembly is immersed in water and allowed to come to thermal equilibrium with water. After opening the stopcock the gas from vessel A expands into vessel B and no change in temperature is observed in the thermometer. Which of the following statement is true?
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: