\[ U = 2x^2 + 3y^3 + 2z \]
The force in the \(x\)-direction is given by \(F_x = -\frac{\partial U}{\partial x}\). Differentiating \(U\) with respect to \(x\):
\[ F_x = -\frac{\partial}{\partial x}(2x^2) = -4x \]
Substitute \(x = 1\):
\[ F_x = -4 \times 1 = -4 \]
The magnitude of \(F_x\) is 4 N.
So, the correct answer is: 4 N
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: