To solve the problem, we are given the functional equation \( f(x+y) = f(x) + f(y) + 1 - \frac{2}{7}xy \) and \( f(x) = (2+3a)x^2 + \frac{a+2}{a-1}x + b \). We want to find \( 28 \sum_{i=1}^5 f(i) \).
1. Substitute \(f(x)\) into the functional equation:
Substitute \( f(x) = (2+3a)x^2 + \frac{a+2}{a-1}x + b \) into the functional equation \( f(x+y) = f(x) + f(y) + 1 - \frac{2}{7}xy \):
\( (2+3a)(x+y)^2 + \frac{a+2}{a-1}(x+y) + b = (2+3a)x^2 + \frac{a+2}{a-1}x + b + (2+3a)y^2 + \frac{a+2}{a-1}y + b + 1 - \frac{2}{7}xy \)
2. Expand and simplify:
Expand \( (x+y)^2 \) and simplify the equation:
\( (2+3a)(x^2 + 2xy + y^2) + \frac{a+2}{a-1}(x+y) + b = (2+3a)x^2 + \frac{a+2}{a-1}x + b + (2+3a)y^2 + \frac{a+2}{a-1}y + b + 1 - \frac{2}{7}xy \) \( (2+3a)x^2 + 2(2+3a)xy + (2+3a)y^2 + \frac{a+2}{a-1}x + \frac{a+2}{a-1}y + b = (2+3a)x^2 + (2+3a)y^2 + \frac{a+2}{a-1}x + \frac{a+2}{a-1}y + 2b + 1 - \frac{2}{7}xy \)
3. Equate coefficients:
Equate the coefficients of the \(xy\) term and the constant terms:
\( 2(2+3a) = -\frac{2}{7} \) and \( b = 2b + 1 \)
4. Solve for \(a\) and \(b\):
From \( 2(2+3a) = -\frac{2}{7} \), we get \( 2+3a = -\frac{1}{7} \), \( 3a = -\frac{15}{7} \), \( a = -\frac{5}{7} \).
From \( b = 2b + 1 \), we get \( b = -1 \).
5. Find \(\frac{a+2}{a-1}\):
Substitute \( a = -\frac{5}{7} \) into \(\frac{a+2}{a-1}\):
\( \frac{a+2}{a-1} = \frac{-\frac{5}{7} + 2}{-\frac{5}{7} - 1} = \frac{\frac{9}{7}}{-\frac{12}{7}} = -\frac{9}{12} = -\frac{3}{4} \)
6. Write the explicit form of \(f(x)\):
Substitute \( a = -\frac{5}{7} \), \( b = -1 \), and \(\frac{a+2}{a-1} = -\frac{3}{4}\) into \( f(x) = (2+3a)x^2 + \frac{a+2}{a-1}x + b \):
\( f(x) = (2 + 3(-\frac{5}{7}))x^2 - \frac{3}{4}x - 1 = (2 - \frac{15}{7})x^2 - \frac{3}{4}x - 1 = -\frac{1}{7}x^2 - \frac{3}{4}x - 1 \)
7. Compute the sum \(\sum_{i=1}^5 f(i)\):
\( \sum_{i=1}^5 f(i) = \sum_{i=1}^5 \left( -\frac{1}{7}i^2 - \frac{3}{4}i - 1 \right) = -\frac{1}{7} \sum_{i=1}^5 i^2 - \frac{3}{4} \sum_{i=1}^5 i - \sum_{i=1}^5 1 \) \( = -\frac{1}{7} \left( \frac{5(5+1)(2(5)+1)}{6} \right) - \frac{3}{4} \left( \frac{5(5+1)}{2} \right) - 5 \) \( = -\frac{1}{7} (55) - \frac{3}{4} (15) - 5 = -\frac{55}{7} - \frac{45}{4} - 5 = -\frac{220 + 315 + 140}{28} = -\frac{675}{28} \)
8. Compute \(28 \sum_{i=1}^5 f(i)\):
\( 28 \sum_{i=1}^5 f(i) = 28 \left( -\frac{675}{28} \right) = 675 \)
Final Answer:
The value of \( 28 \sum_{i=1}^5 f(i) \) is \( {675} \).
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Two vessels A and B are connected via stopcock. Vessel A is filled with a gas at a certain pressure. The entire assembly is immersed in water and allowed to come to thermal equilibrium with water. After opening the stopcock the gas from vessel A expands into vessel B and no change in temperature is observed in the thermometer. Which of the following statement is true?
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: