A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).
The total work is the line integral split into the $x$– and $y$–parts: \[ W=\int_0^4 x^2(10-x)\,dx \;+\; \int_0^2 y^2\,dy \]
\[ \int_0^4 (10x^2 - x^3)\,dx =\left[\frac{10x^3}{3}-\frac{x^4}{4}\right]_0^4 =\frac{640}{3}-64=\frac{448}{3} \]
\[ \int_0^2 y^2\,dy =\left[\frac{y^3}{3}\right]_0^2 =\frac{8}{3} \]
\[ W=\frac{448}{3}+\frac{8}{3}=\frac{456}{3}=152 \]
$\boxed{152\ \text{J}}$
To calculate the total work done by the force, we evaluate the line integral along the given path:
1. Integral Setup:
The work is expressed as the sum of two integrals:
\[ W = \int_0^4 x^2(10 - x)\,dx + \int_0^2 y^2\,dy \]
2. Solving the First Integral (x-component):
\[ \int_0^4 (10x^2 - x^3)\,dx = \left[ \frac{10x^3}{3} - \frac{x^4}{4} \right]_0^4 \]
Evaluating at bounds:
\[ = \left(\frac{10(64)}{3} - \frac{256}{4}\right) - 0 = \frac{640}{3} - 64 = \frac{448}{3} \]
3. Solving the Second Integral (y-component):
\[ \int_0^2 y^2\,dy = \left[ \frac{y^3}{3} \right]_0^2 = \frac{8}{3} - 0 = \frac{8}{3} \]
4. Combining Results:
\[ W = \frac{448}{3} + \frac{8}{3} = \frac{456}{3} = 152 \]
Physical Interpretation:
- The first integral represents work done along the x-axis (0 to 4) with varying force
- The second integral represents work done along the y-axis (0 to 2)
- Units are consistent in Joules for work
Final Answer:
The total work done is \(152 \text{ Joules}\).
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = 4/3 \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \frac{n_2}{2n_1} \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is cm. 
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is: 
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.

Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to: