Understanding the Problem
We are given the position vector of a particle:
\( r = 10t\hat{i} + 15t^2\hat{j} + 7t\hat{k} \)
We need to find the direction of the net force acting on the particle.
Solution
1. Velocity Vector (v):
The velocity vector is the first derivative of the position vector with respect to time:
\( v = \frac{dr}{dt} = \frac{d}{dt}(10t\hat{i} + 15t^2\hat{j} + 7t\hat{k}) \)
\( v = 10\hat{i} + 30t\hat{j} + 7\hat{k} \)
2. Acceleration Vector (a):
The acceleration vector is the first derivative of the velocity vector with respect to time (or the second derivative of the position vector):
\( a = \frac{dv}{dt} = \frac{d}{dt}(10\hat{i} + 30t\hat{j} + 7\hat{k}) \)
\( a = 30\hat{j} \)
3. Net Force (F):
According to Newton's second law, the net force is given by:
\( F = ma \)
Since \( a = 30\hat{j} \), we have:
\( F = m(30\hat{j}) = 30m\hat{j} \)
4. Direction of the Force:
The acceleration vector \( a = 30\hat{j} \) indicates that the acceleration is directed along the positive y-axis.
Since \( F = ma \), the force vector \( F = 30m\hat{j} \) is also directed along the positive y-axis.
Final Answer
The net force acting on the particle is directed along the positive y-axis.
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}