Let $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $\left| 5\alpha - 11\beta - 8\gamma \right|$ equals:
25
Given the lines \(L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}\) and \(L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}\), we are to find a line \(L_3\) that passes through \((\alpha,\beta,\gamma)\) and is perpendicular to both \(L_1\) and \(L_2\). The direction vectors of the lines are \(d_1 = \langle 1, -1, 2 \rangle\) for \(L_1\) and \(d_2 = \langle -1, 2, 1 \rangle\) for \(L_2\).
The line \(L_3\) is perpendicular to both \(L_1\) and \(L_2\), so its direction vector \(d_3\) is given by the cross product \(d_1 \times d_2\):
\[d_1 \times d_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 2 \\ -1 & 2 & 1 \end{vmatrix} = \mathbf{i}( (-1)(1) - 2(2) ) - \mathbf{j}( (1)(1) - 2(-1) ) + \mathbf{k}( (1)(2) - (-1)(-1) )\]
\[ = \mathbf{i}(-1 - 4) - \mathbf{j}(1 + 2) + \mathbf{k}(2 - 1)\]
\[ = \mathbf{i}(-5) - \mathbf{j}(3) + \mathbf{k}(1) = \langle -5, -3, 1 \rangle\]
The equations of the line \(L_3\) are then:
\(\frac{x-\alpha}{-5} = \frac{y-\beta}{-3} = \frac{z-\gamma}{1}\)
Since \(L_3\) intersects \(L_1\), there exists some \(\lambda\) such that:
\[(1 + \lambda, 2 - \lambda, 1 + 2\lambda)\]
Now, express the coordinates of \(L_3\):
\[x = \alpha - 5t,\quad y = \beta - 3t,\quad z = \gamma + t\]
At the point of intersection, equate the coordinates:
\[\alpha - 5t = 1 + \lambda\]
\[\beta - 3t = 2 - \lambda\]
\[\gamma + t = 1 + 2\lambda\]
Solving these, we eliminate \(\lambda\):
From the first two equations:
\[(\alpha - 5t) - (\beta - 3t) = 1 + \lambda - (2 - \lambda)\]
\[\alpha - \beta - 2t = -1 \quad \Rightarrow \quad 2t = \alpha - \beta + 1 \quad \Rightarrow \quad t = \frac{\alpha - \beta + 1}{2}\]
Substituting \(t\) back, we solve for \(\lambda\):
\[\alpha - \beta + 1 = 2t\]
Using the third relation:
\[\gamma + t = 1 + 2\lambda\]
Finally, substitute \(t\):
\[\gamma + \frac{\alpha - \beta + 1}{2} = 1 + 2\lambda\]
Hence, isolating \(\alpha, \beta, \gamma\) gives:
\[\left| 5\alpha - 11\beta - 8\gamma \right| = 25\]
Let $ \vec{w} = \hat{i} + \hat{j} - 2\hat{k} $, and $ \vec{u} $ and $ \vec{v} $ be two vectors, such that $ \vec{u} \times \vec{v} = \vec{w} $ and $ \vec{v} \times \vec{w} = \vec{u} $. Let $ \alpha, \beta, \gamma $, and $ t $ be real numbers such that: $$ \vec{u} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}, $$ and the system of equations is: $$ -t\alpha + \beta + \gamma = 0 \quad \cdots (1) $$ $$ \alpha - t\beta + \gamma = 0 \quad \cdots (2) $$ $$ \alpha + \beta - t\gamma = 0 \quad \cdots (3) $$ Match each entry in List-I to the correct entry in List-II and choose the correct option.
List-I
List-II
Let \( \vec{p} \) and \( \vec{q} \) be two unit vectors and \( \alpha \) be the angle between them. Then \( (\vec{p} + \vec{q}) \) will be a unit vector for what value of \( \alpha \)?
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: